Modeling of Mn/ROAD Test Sections with the CRREL Mechanistic Pavement Design Procedure

Modeling of Mn/ROAD Test Sections with the CRREL Mechanistic Pavement Design Procedure

Author: Susan R. Bigl

Publisher: DIANE Publishing

Published: 1996

Total Pages: 50

ISBN-13: 1428913955

DOWNLOAD EBOOK

The U.S. Army Cold Regions Research and Engineering Laboratory is developing a mechanistic pavement design procedure for use in seasonal frost areas. The procedure was used to predict pavement performance of some test sections under construction at the Mn/ROAD facility. Simulations were conducted in three phases, investigating the effects on predictions of water table position, subgrade characteristics, asphalt model, and freeze season characteristics. The procedure predicted significantly different performance by the different test sections and highly variable results depending on the performance model applied. The simulated performance of the tests sections also was greatly affected by the subgrade conditions, e.g., density, soil moisture, and water table depth. In general, predictions for the full depth asphalt sections indicate that they will not fail due to cracking, but two of the three criteria for subgrade rufting indicate failure before the five or 10 year design life of the sections. Conventional sections are predicted not to fail due to subgrade rutting; however, sections including the more frost susceptible bases in their design are predicted to fail due to asphalt cracking relatively early in their design life, and sections with nonfrost susceptible bases are predicted to fail towards the end of the design life.


Frozen Ground Engineering

Frozen Ground Engineering

Author: Orlando B. Andersland

Publisher: John Wiley & Sons

Published: 2003-11-05

Total Pages: 384

ISBN-13: 9780471615491

DOWNLOAD EBOOK

This new edition of Frozen Ground Engineering gives a peerless presentation of soil mechanics for frozen ground conditions and a variety of frozen ground support systems used on construction projects worldwide. An authoritative update of the industry standard, this Second Edition covers the essential theory, applications, and design methods using frozen ground in the construction of deep shafts, tunnels, deep excavations, and subsurface containment barriers. New material features design models for pavement structures used in seasonal frost and permafrost areas, new information on the movement of fluid phase contaminants in frozen ground, and helpful appendices offering guidance on common frozen ground tests and SI unit conversions. This new edition gives the essential information engineers, geologists, and students need in a complete reference, including up-to-date information on: Sensitivity of frozen ground to climate change Experimental work on frozen soil creep and strength Monitoring creep in frozen slopes Frost protection of foundations using ground insulation Highway insulation Load restrictions for seasonal frost areas


Mechanistic-empirical Evaluation of the Mn/Road Mainline Flexible Pavement Sections

Mechanistic-empirical Evaluation of the Mn/Road Mainline Flexible Pavement Sections

Author: Claribel Alvarez

Publisher:

Published: 1998

Total Pages: 374

ISBN-13:

DOWNLOAD EBOOK

This study utilized Illinois DOT (IDOT) mechanistic-empirical (M-E) technology and Mn/ROAD mainline pavement section data and information to verify/refine/modify IDOT M-E analysis and design concepts and procedures for full-depth asphalt concrete (FDAC) and conventional flexible pavements (CFP). The Mn/ROAD mainline flexible pavements include eleven CFP and three FDAC pavement sections. Four different granular materials were used in the conventional flexible pavements. A fine-grained soil subgrade (R-value of about 12) is present throughout the mainline. Laboratory material testing results, field distress measurements, and FWD test data were used to study pavement deflection response and performance (rutting and asphalt concrete fatigue). The study demonstrated that the IDOT M-E analysis and design procedures for FDAC and CFP sections are adequate. The ILLI-PA VE structural model adequately predicts the pavement responses. The use of bi-linear (arithmetic) subgrade model and the "theta" granular material model ILLI-PA VE inputs closely replicate CFP field FWD deflection responses. The effect of granular material quality on CFP deflection response is very limited. The ILLI-PAVE FWD backcalculation algorithms are adequate for estimating the moduli of asphalt concrete and sub grade soils.