The Encyclopedia of Medical Decision Making presents state-of-the-art research and ready-to-use facts sorting out findings on medical decision making and their applications.
In financially constrained health systems across the world, increasing emphasis is being placed on the ability to demonstrate that health care interventions are not only effective, but also cost-effective. This book deals with decision modelling techniques that can be used to estimate the value for money of various interventions including medical devices, surgical procedures, diagnostic technologies, and pharmaceuticals. Particular emphasis is placed on the importance of the appropriate representation of uncertainty in the evaluative process and the implication this uncertainty has for decision making and the need for future research. This highly practical guide takes the reader through the key principles and approaches of modelling techniques. It begins with the basics of constructing different forms of the model, the population of the model with input parameter estimates, analysis of the results, and progression to the holistic view of models as a valuable tool for informing future research exercises. Case studies and exercises are supported with online templates and solutions. This book will help analysts understand the contribution of decision-analytic modelling to the evaluation of health care programmes. ABOUT THE SERIES: Economic evaluation of health interventions is a growing specialist field, and this series of practical handbooks will tackle, in-depth, topics superficially addressed in more general health economics books. Each volume will include illustrative material, case histories and worked examples to encourage the reader to apply the methods discussed, with supporting material provided online. This series is aimed at health economists in academia, the pharmaceutical industry and the health sector, those on advanced health economics courses, and health researchers in associated fields.
This volume presents novel concepts to help physicians and health care providers better understand the thought processes and approaches used in clinical decision-making and how we develop those skills as we transition from being a medical student to post-graduate trainee to independent practitioner. Approaches presented range from simple rules of thumb, pattern recognition, and heuristics, to more formulaic methods such as standard operating procedures, checklists, evidence-based medicine, mathematical modeling, and statistics. Ways to recognize and manage errors and how our decision-making can be improved, are also discussed. An Introduction to Medical Decision-Making presents several innovative techniques to allow the reader to use the principles presented and integrate the ethical, humanistic and social aspects of decision-making with the pragmatic and knowledge-based aspects of clinical medicine. It also highlights how our thinking processes, emotions, and biases affect decision-making. This invaluable resource will allow students and physicians to evaluate and critically discuss their decisions objectively to become more efficient and effective, and maximize the quality of care they provide.
In both rich and poor nations, public resources for health care are inadequate to meet demand. Policy makers and health care providers must determine how to provide the most effective health care to citizens using the limited resources that are available. This chapter describes current and future challenges in the delivery of health care, and outlines the role that operations research (OR) models can play in helping to solve those problems. The chapter concludes with an overview of this book – its intended audience, the areas covered, and a description of the subsequent chapters. KEY WORDS Health care delivery, Health care planning HEALTH CARE DELIVERY: PROBLEMS AND CHALLENGES 3 1.1 WORLDWIDE HEALTH: THE PAST 50 YEARS Human health has improved significantly in the last 50 years. In 1950, global life expectancy was 46 years [1]. That figure rose to 61 years by 1980 and to 67 years by 1998 [2]. Much of these gains occurred in low- and middle-income countries, and were due in large part to improved nutrition and sanitation, medical innovations, and improvements in public health infrastructure.
This edited book is divided into three parts: Fundamentals of Medical and Health Sciences Modeling and Simulation introduces modeling and simulation in the medical and health sciences; Medical and Health Sciences Models provides the theoretical underpinnings of medical and health sciences modeling; and Modeling and Simulation Applications in Medical and Health Sciences focuses on teaching, training, and research applications. The book begins with a general discussion of modeling and simulation from the modeling and simulation discipline perspective. This discussion grounds the reader in common terminology. It also relates this terminology to concepts found in the medical and health care (MHC) area to help bridge the gap between developers and MHC practitioners. Three distinct modes of modeling and simulation are described: live, constructive, and virtual. The live approach explains the concept of using real (live) people employing real equipment for training purposes. The constructive mode is a means of engaging medical modeling and simulation. In constructive simulation, simulated people and simulated equipment are developed to augment real-world conditions for training or experimentation purposes. The virtual mode is perhaps the most fascinating as virtual operating rooms and synthetic training environments are being produced for practitioners and educators at break-neck speed. In this mode, real people are employing simulated equipment to improve physical skills and decision-making ability.
COVID-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting the virus, enormously tap into the power of artificial intelligence and its predictive models for urgent decision support. This book showcases a collection of important predictive models that used during the pandemic, and discusses and compares their efficacy and limitations. Readers from both healthcare industries and academia can gain unique insights on how predictive models were designed and applied on epidemic data. Taking COVID19 as a case study and showcasing the lessons learnt, this book will enable readers to be better prepared in the event of virus epidemics or pandemics in the future.
The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability. The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. Updates to this new and expanded edition include: • A discussion of Big Data and its implications for the design of prediction models • Machine learning issues • More simulations with missing ‘y’ values • Extended discussion on between-cohort heterogeneity • Description of ShinyApp • Updated LASSO illustration • New case studies