Modeling Flight NASA Latest Version

Modeling Flight NASA Latest Version

Author: Joseph Chambers

Publisher: Joseph Chambers

Published: 2015-08-10

Total Pages: 202

ISBN-13: 0160846331

DOWNLOAD EBOOK

state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely power- ful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations—the human pilot—to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applica- tions of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles.


Modeling Flight: the Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

Modeling Flight: the Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

Author: Joseph Chambers

Publisher: CreateSpace

Published: 2012-07-16

Total Pages: 200

ISBN-13: 9781478254850

DOWNLOAD EBOOK

The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations-the human pilot-to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles.


Modeling Flight

Modeling Flight

Author: Joseph Chambers

Publisher: BiblioGov

Published: 2013-06

Total Pages: 206

ISBN-13: 9781289147976

DOWNLOAD EBOOK

The NASA Technical Reports Servcr (NTRS) houses half a million publications that are a valuable means of information to researchers, teachers, students, and the general public. These documents are all aerospace related with much scientific and technical information created or funded by NASA. Some types of documents include conference papers, research reports, meeting papers, journal articles and more. This is one of those documents.


On Subscale Flight Testing

On Subscale Flight Testing

Author: Alejandro Sobron

Publisher: Linköping University Electronic Press

Published: 2018-11-05

Total Pages: 130

ISBN-13: 9176852202

DOWNLOAD EBOOK

Downscaled physical models, also referred to as subscale models, have played an essential role in the investigation of the complex physics of flight until the recent disruption of numerical simulation. Despite the fact that improvements in computational methods are slowly pushing experimental techniques towards a secondary role as verification or calibration tools, real-world testing of physical prototypes still provides an unmatched confidence. Physical models are very effective at revealing issues that are sometimes not correctly identified in the virtual domain, and hence can be a valuable complement to other design tools. But traditional wind-tunnel testing cannot always meet all of the requirements of modern aeronautical research and development. It is nowadays too expensive to use these scarce facilities to explore different design iterations during the initial stages of aircraft development, or to experiment with new and immature technologies. Testing of free-flight subscale models, referred to as Subscale Flight Testing (SFT), could offer an affordable and low-risk alternative for complementing conventional techniques with both qualitative and quantitative information. The miniaturisation of mechatronic systems, the advances in rapid-prototyping techniques and power storage, as well as new manufacturing methods, currently enable the development of sophisticated test objects at scales that were impractical some decades ago. Moreover, the recent boom in the commercial drone industry has driven a quick development of specialised electronics and sensors, which offer nowadays surprising capabilities at competitive prices. These recent technological disruptions have significantly altered the cost-benefit function of SFT and it is necessary to re-evaluate its potential in the contemporary aircraft development context. This thesis aims to increase the comprehension and knowledge of the SFT method in order to define a practical framework for its use in aircraft design; focusing on low-cost, short-time solutions that don’t require more than a small organization and few resources. This objective is approached from a theoretical point of view by means of an analysis of the physical and practical limitations of the scaling laws; and from an empirical point of view by means of field experiments aimed at identifying practical needs for equipment, methods, and tools. A low-cost data acquisition system is developed and tested; a novel method for semi-automated flight testing in small airspaces is proposed; a set of tools for analysis and visualisation of flight data is presented; and it is also demonstrated that it is possible to explore and demonstrate new technology using SFT with a very limited amount of economic and human resources. All these, together with a theoretical review and contextualisation, contribute to increasing the comprehension and knowledge of the SFT method in general, and its potential applications in aircraft conceptual design in particular.


In-Flight Simulators and Fly-by-Wire/Light Demonstrators

In-Flight Simulators and Fly-by-Wire/Light Demonstrators

Author: Peter G. Hamel

Publisher: Springer

Published: 2017-03-15

Total Pages: 359

ISBN-13: 3319539973

DOWNLOAD EBOOK

This book offers the first complete account of more than sixty years of international research on In-Flight Simulation and related development of electronic and electro-optic flight control system technologies (“Fly-by-Wire” and “Fly-by-Light”). They have provided a versatile and experimental procedure that is of particular importance for verification, optimization, and evaluation of flying qualities and flight safety of manned or unmanned aircraft systems. Extensive coverage is given in the book to both fundamental information related to flight testing and state-of-the-art advances in the design and implementation of electronic and electro-optic flight control systems, which have made In-Flight Simulation possible. Written by experts, the respective chapters clearly show the interdependence between various aeronautical disciplines and in-flight simulation methods. Taken together, they form a truly multidisciplinary book that addresses the needs of not just flight test engi neers, but also other aeronautical scientists, engineers and project managers and historians as well. Students with a general interest in aeronautics as well as researchers in countries with growing aeronautical ambitions will also find the book useful. The omission of mathematical equations and in-depth theoretical discussions in favor of fresh discussions on innovative experiments, together with the inclusion of anecdotes and fascinating photos, make this book not only an enjoyable read, but also an important incentive to future research. The book, translated from the German by Ravindra Jategaonkar, is an extended and revised English edition of the book Fliegende Simulatoren und Technologieträger , edited by Peter Hamel and published by Appelhans in 2014.


8th EASN-CEAS Workshop on Manufacturing for Growth and Innovation

8th EASN-CEAS Workshop on Manufacturing for Growth and Innovation

Author: Konstantinos Kontis

Publisher: MDPI

Published: 2019-09-27

Total Pages: 166

ISBN-13: 3039214853

DOWNLOAD EBOOK

This Special Issue contains selected papers from works presented at the 8th EASN–CEAS (European Aeronautics Science Network–Council of European Aerospace Societies) Workshop on Manufacturing for Growth and Innovation, which was held in Glasgow, UK, 4–7 September 2018. About 150 participants contributed to a high-level scientific gathering providing some of the latest research results on the topic, as well as some of the latest relevant technological advancements. Νine interesting articles, which cover a wide range of topics including characterization, analysis and design, as well as numerical simulation, are contained in this Special Issue.


Flight Test System Identification

Flight Test System Identification

Author: Roger Larsson

Publisher: Linköping University Electronic Press

Published: 2019-05-15

Total Pages: 326

ISBN-13: 9176850706

DOWNLOAD EBOOK

With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.