This book gives an overview of various aspects of climate change by integrating global climate models, downscaling approaches, and hydrological models. It also covers themes that help in understanding climate change in a holistic manner. The book includes worked-out examples, revision questions, exercise problems, and case studies, making it relevant for use as a textbook in graduate courses and professional development programs. The book will serve well researchers, students, as well as professionals working in the area of hydroclimatology.
Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation
While most books only examine the classical aspects of hydrology, the three-volume set covers multiple aspects of hydrology, and includes contributions from experts from more than 30 countries. It examines new approaches, addresses growing concerns about hydrological and ecological connectivity, and considers the worldwide impact of climate change. It also provides updated material on hydrological science and engineering, discussing recent developments as well as classic approaches. Published in three books, Fundamentals and Applications; Modeling, Climate Change, and Variability; and Environmental Hydrology and Water Management, the entire set consists of 87 chapters, and contains 29 chapters in each book. The chapters in this book contain information on: Long-term generation of scheduling of hydro plants, check dam selection procedures in rainwater harvesting, and stochastic reservoir analysis Ecohydrology for engineering harmony in the changing world, concepts, and plant water use Conjunctive use of groundwater and surface water Hydrologic and hydraulic design in green infrastructure Data processing in hydrology, optimum hydrometric site selection and quality control, and homogenization of climatological series Cold region hydrology, evapotranspiration, and water consumption Modern flood prediction and warning systems, and satellite-based systems for flood monitoring and warning Catchment water yield estimation, hydrograph analysis and base flow separation, and low flow hydrology Sustainability in urban water systems and urban hydrology Students, practitioners, policy makers, consultants and researchers can benefit from the use of this text.
Beginning with an overview of data and concepts developed in the EU-project HABIT-CHANGE, this book addresses the need for sharing knowledge and experience in the field of biodiversity conservation and climate change. There is an urgent need to build capacity in protected areas to monitor, assess, manage and report the effects of climate change and their interaction with other pressures. The contributors identify barriers to the adaptation of conservation management, such as the mismatch between planning reality and the decision context at site level. Short and vivid descriptions of case studies, drawn from investigation areas all over Central and Eastern Europe, illustrate both the local impacts of climate change and their consequences for future management. These focus on ecosystems most vulnerable to changes in climatic conditions, including alpine areas, wetlands, forests, lowland grasslands and coastal areas. The case studies demonstrate the application of adaptation strategies in protected areas like National Parks, Biosphere Reserves and Natural Parks, and reflect the potential benefits as well as existing obstacles. A general section provides the necessary background information on climate trends and their effects on abiotic and biotic components. Often, the parties to policy change and conservation management, including managers, land users and stakeholders, lack both expertise and incentives to undertake adaptation activities. The authors recognise that achieving the needed changes in behavior – habit – is as much a social learning process as a matter of science-based procedure. They describe the implementation of modeling, impact assessment and monitoring of climate conditions, and show how the results can support efforts to increase stakeholder involvement in local adaptation strategies. The book concludes by pointing out the need for more work to communicate the cross-sectoral nature of biodiversity protection, the value of well-informed planning in the long-term process of adaptation, the definition of acceptable change, and the motivational value of exchanging experience and examples of good practice.
This book provides insights and a capacity to understand the climate change phenomenon, its impact on water resources, and possible remedial measures. The impact of climate change on water resources is a global issue and cause for concern. Water resources in many countries are extremely stressed, and climate change along with burgeoning populations, the rise in living standards, and increasing demand on resources are factors which serve to exacerbate this stress. The chapters provide information on tools that will be useful to mitigate the adverse consequences of natural disasters. Fundamental to addressing these issues is hydrological modelling which is discussed in this book and ways to combat climate change as an important aspect of water resource management.
This book discusses different aspects of water resources, ranging from hydrology and modeling to management and policy responses. Climate changes and the uncertainty of future hydrological regimes make sustainable water resources management a difficult task, requiring a set of approaches that address climate variability and change. The book focuses on three main themes: hydrological changes, adaptive decision-making for water resources, and institutional analysis and risk management. It discusses the applications and limitations of climate change models and scenarios related to precipitation projection, which predicts to the future availability of water. It also offers interesting examples from around the globe to describe the policy options for dealing with climate change. Addressing emerging issues that need to be resolved and techniques that can be applied for sustainable climate-change-sensitive water resources protection and management, this practical, state-of-the-art reference book is a valuable resource for researchers, students and professionals interested in sustainable water resources management in a changing climate.
Many challenges, including climate change, face the Nation¿s water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. Charts and tables.
The report evaluates the impacts of climate change on the hydrological regime and water resources of the Blue Nile River Basin in Ethiopia. It starts from the construction of the climate change scenarios based on the outcomes of several general circulation models (GCMs), uses a simple hydrological model to convert theses scenarios into runoff, and examines the impacts by means of a set of indices. The results, however uncertain with existing accuracy of climate models, suggest that the region is likely to have the future potential to produce hydropower, increase flow duration, and increase water storage capacity without affecting outflows to the riparian countries in the 2050s.