Modelling and Simulation of Turbulent Heat Transfer

Modelling and Simulation of Turbulent Heat Transfer

Author: B. Sundén

Publisher: WIT Press

Published: 2005-02-21

Total Pages: 361

ISBN-13: 1853129569

DOWNLOAD EBOOK

Providing invaluable information for both graduate researchers and R & D engineers in industry and consultancy, this book focuses on the modelling and simulation of fluid flow and thermal transport phenomena in turbulent convective flows. Its overall objective is to present state-of-the-art knowledge in order to predict turbulent heat transfer processes in fundamental and idealized flows as well as in engineering applications. The chapters, which are invited contributions from some of the most prominent scientists in this field, cover a wide range of topics and follow a unified outline and presentation to aid accessibility.


Modeling and Simulation of Fluid Flow and Heat Transfer

Modeling and Simulation of Fluid Flow and Heat Transfer

Author: Reshu Gupta

Publisher: CRC Press

Published: 2024-03-14

Total Pages: 235

ISBN-13: 1003855660

DOWNLOAD EBOOK

In the rapidly advancing modern world, scientific and technological understanding and innovation are reaching new heights. Computational fluid dynamics and heat transfer have emerged as powerful tools, playing a pivotal role in the analysis and design of complex engineering problems and processes. With the ability to mathematically model various engineering phenomena, these computational tools offer a deeper understanding of intricate dynamics before the physical prototype is created. Widely employed as simulation tools, computational fluid dynamics and heat transfer codes enable the virtual or digital prototype development of products and devices involving complex transport and multiphasic phenomena. They have become an indispensable element of the agile product development environment across diverse sectors of manufacturing, facilitating accelerated product development cycles. Key features of this book: Covers the analysis of advanced thermal engineering systems Explores the simulation of various fluids with slip effect Applies entropy and optimization techniques to thermal engineering systems Discusses heat and mass transfer phenomena Explores fluid flow and heat transfer in porous media Captures recent developments in analytical and computational methods used to investigate the complex mathematical models of fluid dynamics Covers the application of mathematical and computational modeling techniques to fluid flow problems in various geometries Modeling and Simulation of Fluid Flow and Heat Transfer delves into the fascinating world of fluid dynamics and heat transfer modeling, presenting an extensive exploration of these subjects. This book is a valuable resource for researchers, engineers, and students seeking to comprehend and apply numerical methods and computational tools in fluid dynamics and heat transfer problems.


CFD Modeling and Simulation in Materials Processing

CFD Modeling and Simulation in Materials Processing

Author: Laurentiu Nastac

Publisher: John Wiley & Sons

Published: 2012-05-09

Total Pages: 365

ISBN-13: 1118364643

DOWNLOAD EBOOK

Proceedings of a symposium sponsored by Association for Iron and Steel Technology and the Process Technology and Modeling Committee of the Extraction and Processing Division and the Solidification Committee of the Materials Processing and Manufacturing Division of TMS (The Minerals, Metals & Materials Society) Held during the TMS 2012 Annual Meeting & Exhibition Orlando, Florida, USA, March 11-15, 2012


Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications

Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications

Author: Mehrdad Massoudi

Publisher: MDPI

Published: 2020-04-16

Total Pages: 470

ISBN-13: 3039287206

DOWNLOAD EBOOK

Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.


The Numerical Simulation of Fluid Flow

The Numerical Simulation of Fluid Flow

Author: Robert Castilla

Publisher: Mdpi AG

Published: 2022-02-17

Total Pages: 158

ISBN-13: 9783036529318

DOWNLOAD EBOOK

This book collects the accepted contributions to the Special Issue "The Numerical Simulation of Fluid Flow" in the Energies journal of MDPI. It is focused more on practical applications of numerical codes than in its development. It covers a wide variety of topics, from aeroacoustics to aerodynamics and flow-particles interaction.


Modelling of Convective Heat and Mass Transfer in Rotating Flows

Modelling of Convective Heat and Mass Transfer in Rotating Flows

Author: Igor V. Shevchuk

Publisher: Springer

Published: 2015-07-24

Total Pages: 253

ISBN-13: 3319209612

DOWNLOAD EBOOK

This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analytical solutions. The book will be a valuable read for research experts and practitioners in the field of heat and mass transfer.


Heat Transfer and Fluid Flow in Minichannels and Microchannels

Heat Transfer and Fluid Flow in Minichannels and Microchannels

Author: Satish Kandlikar

Publisher: Elsevier

Published: 2006

Total Pages: 492

ISBN-13: 9780080445274

DOWNLOAD EBOOK

&Quot;This book explores flow through passages with hydraulic diameters from about 1 [mu]m to 3 mm, covering the range of minichannels and microchannels. Design equations along with solved examples and practice problems are also included to serve the needs of practicing engineers and students in a graduate course."--BOOK JACKET.


Modelling Fluid Flow

Modelling Fluid Flow

Author: János Vad

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 424

ISBN-13: 3662087979

DOWNLOAD EBOOK

Modelling Fluid Flow presents invited lectures, workshop summaries and a selection of papers from a recent international conference CMFF '03 on fluid technology. The lectures follow the current evolution and the newest challenges of the computational methods and measuring techniques related to fluid flow. The workshop summaries reflect the recent trends, open questions and unsolved problems in the mutually inspiring fields of experimental and computational fluid mechanics. The papers cover a wide range of fluids engineering, including reactive flow, chemical and process engineering, environmental fluid dynamics, turbulence modelling, numerical methods, and fluid machinery.


Multiphysics Modeling: Numerical Methods and Engineering Applications

Multiphysics Modeling: Numerical Methods and Engineering Applications

Author: Qun Zhang

Publisher: Elsevier

Published: 2015-12-15

Total Pages: 438

ISBN-13: 0124077374

DOWNLOAD EBOOK

Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. - Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume - Provides a go-to resource for coupling and multiphysics problems - Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others - Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering


Nanoparticle Heat Transfer and Fluid Flow

Nanoparticle Heat Transfer and Fluid Flow

Author: W. J. Minkowycz

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 335

ISBN-13: 1439861951

DOWNLOAD EBOOK

Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to mate