The new edition of this widely used and respected textbook includes three new chapters on conditional logic. Other chapters have been revised and updated, making the second edition a fully comprehensive introduction to modal logics and their application. Unlike most modal logic textbooks, which are both forbidding mathematically and short on philosophical discussion, Modal Logics and Philosophy focuses on showing how useful modal logic can be as a tool for formal philosophical analysis. In Part 1, the reader is introduced to some standard systems of modal logic and provided with a series of exercises that encourage proficiency in manipulating these logics. Girle emphasizes possible world semantics for modal logics and its formal method, Jeffrey-style truth-trees, in which standard truth-trees are extended in a simple and transparent way to take possible worlds into account. Part 2 explores the applications of modal logic to philosophical issues such as truth, time, processes, knowledge and belief, and obligation and permission.
The first edition, published by Acumen in 2000, became a prescribed textbook on modal logic courses. The second edition has been fully revised in response to readers' suggestions, including two new chapters on conditional logic, which was not covered in the first edition. "Modal Logics and Philosophy" is a fully comprehensive introduction to modal logics and their application suitable for course use. Unlike most modal logic textbooks, which are both forbidding mathematically and short on philosophical discussion, "Modal Logics and Philosophy" places its emphasis firmly on showing how useful modal logic can be as a tool for formal philosophical analysis. In part 1 of the book, the reader is introduced to some standard systems of modal logic and encouraged through a series of exercises to become proficient in manipulating these logics. The emphasis is on possible world semantics for modal logics and the semantic emphasis is carried into the formal method, Jeffrey-style truth-trees. Standard truth-trees are extended in a simple and transparent way to take possible worlds into account. Part 2 systematically explores the applications of modal logic to philosophical issues such as truth, time, processes, knowledge and belief, obligation and permission.
This revised and considerably expanded 2nd edition brings together a wide range of topics, including modal, tense, conditional, intuitionist, many-valued, paraconsistent, relevant, and fuzzy logics. Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
Modal logics, originally conceived in philosophy, have recently found many applications in computer science, artificial intelligence, the foundations of mathematics, linguistics and other disciplines. Celebrated for their good computational behaviour, modal logics are used as effective formalisms for talking about time, space, knowledge, beliefs, actions, obligations, provability, etc. However, the nice computational properties can drastically change if we combine some of these formalisms into a many-dimensional system, say, to reason about knowledge bases developing in time or moving objects.To study the computational behaviour of many-dimensional modal logics is the main aim of this book. On the one hand, it is concerned with providing a solid mathematical foundation for this discipline, while on the other hand, it shows that many seemingly different applied many-dimensional systems (e.g., multi-agent systems, description logics with epistemic, temporal and dynamic operators, spatio-temporal logics, etc.) fit in perfectly with this theoretical framework, and so their computational behaviour can be analyzed using the developed machinery.We start with concrete examples of applied one- and many-dimensional modal logics such as temporal, epistemic, dynamic, description, spatial logics, and various combinations of these. Then we develop a mathematical theory for handling a spectrum of 'abstract' combinations of modal logics - fusions and products of modal logics, fragments of first-order modal and temporal logics - focusing on three major problems: decidability, axiomatizability, and computational complexity. Besides the standard methods of modal logic, the technical toolkit includes the method of quasimodels, mosaics, tilings, reductions to monadic second-order logic, algebraic logic techniques. Finally, we apply the developed machinery and obtained results to three case studies from the field of knowledge representation and reasoning: temporal epistemic logics for reasoning about multi-agent systems, modalized description logics for dynamic ontologies, and spatio-temporal logics.The genre of the book can be defined as a research monograph. It brings the reader to the front line of current research in the field by showing both recent achievements and directions of future investigations (in particular, multiple open problems). On the other hand, well-known results from modal and first-order logic are formulated without proofs and supplied with references to accessible sources.The intended audience of this book is logicians as well as those researchers who use logic in computer science and artificial intelligence. More specific application areas are, e.g., knowledge representation and reasoning, in particular, terminological, temporal and spatial reasoning, or reasoning about agents. And we also believe that researchers from certain other disciplines, say, temporal and spatial databases or geographical information systems, will benefit from this book as well.Key Features:• Integrated approach to modern modal and temporal logics and their applications in artificial intelligence and computer science• Written by internationally leading researchers in the field of pure and applied logic• Combines mathematical theory of modal logic and applications in artificial intelligence and computer science• Numerous open problems for further research• Well illustrated with pictures and tables
Timothy Williamson gives an original and provocative treatment of deep metaphysical questions about existence, contingency, and change, using the latest resources of quantified modal logic. Contrary to the widespread assumption that logic and metaphysics are disjoint, he argues that modal logic provides a structural core for metaphysics.
This book develops a novel generalization of possible world semantics, called ‘world line semantics’, which recognizes worlds and links between world-bound objects (world lines) as mutually independent aspects of modal semantics. Addressing a wide range of questions vital for contemporary debates in logic and philosophy of language and offering new tools for theoretical linguistics and knowledge representation, the book proposes a radically new paradigm in modal semantics. This framework is motivated philosophically, viewing a structure of world lines as a precondition of modal talk. The author provides a uniform analysis of quantification over individuals (physical objects) and objects of thought (intentional objects). The semantic account of what it means to speak of intentional objects throws new light on accounts of intentionality and singular thought in the philosophy of mind and offers novel insights into the semantics of intensional transitive verbs.
Logic for Philosophy is an introduction to logic for students of contemporary philosophy. It is suitable both for advanced undergraduates and for beginning graduate students in philosophy. It covers (i) basic approaches to logic, including proof theory and especially model theory, (ii) extensions of standard logic that are important in philosophy, and (iii) some elementary philosophy of logic. It emphasizes breadth rather than depth. For example, it discusses modal logic and counterfactuals, but does not prove the central metalogical results for predicate logic (completeness, undecidability, etc.) Its goal is to introduce students to the logic they need to know in order to read contemporary philosophical work. It is very user-friendly for students without an extensive background in mathematics. In short, this book gives you the understanding of logic that you need to do philosophy.