Mining Heterogeneous Information Networks

Mining Heterogeneous Information Networks

Author: Yizhou Sun

Publisher: Morgan & Claypool Publishers

Published: 2012

Total Pages: 162

ISBN-13: 1608458806

DOWNLOAD EBOOK

Investigates the principles and methodologies of mining heterogeneous information networks. Departing from many existing network models that view interconnected data as homogeneous graphs or networks, the semi-structured heterogeneous information network model leverages the rich semantics of typed nodes and links in a network and uncovers surprisingly rich knowledge from the network.


Heterogeneous Information Network Analysis and Applications

Heterogeneous Information Network Analysis and Applications

Author: Chuan Shi

Publisher: Springer

Published: 2017-05-25

Total Pages: 233

ISBN-13: 3319562126

DOWNLOAD EBOOK

This book offers researchers an understanding of the fundamental issues and a good starting point to work on this rapidly expanding field. It provides a comprehensive survey of current developments of heterogeneous information network. It also presents the newest research in applications of heterogeneous information networks to similarity search, ranking, clustering, recommendation. This information will help researchers to understand how to analyze networked data with heterogeneous information networks. Common data mining tasks are explored, including similarity search, ranking, and recommendation. The book illustrates some prototypes which analyze networked data. Professionals and academics working in data analytics, networks, machine learning, and data mining will find this content valuable. It is also suitable for advanced-level students in computer science who are interested in networking or pattern recognition.


Discovery Science

Discovery Science

Author: João Gama

Publisher: Springer

Published: 2009-10-07

Total Pages: 487

ISBN-13: 3642047475

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the twelfth International Conference, on Discovery Science, DS 2009, held in Porto, Portugal, in October 2009. The 35 revised full papers presented were carefully selected from 92 papers. The scope of the conference includes the development and analysis of methods for automatic scientific knowledge discovery, machine learning, intelligent data analysis, theory of learning, as well as their applications.


Mining Heterogeneous Information Networks

Mining Heterogeneous Information Networks

Author: Yizhou Sun

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 196

ISBN-13: 3031019024

DOWNLOAD EBOOK

Real-world physical and abstract data objects are interconnected, forming gigantic, interconnected networks. By structuring these data objects and interactions between these objects into multiple types, such networks become semi-structured heterogeneous information networks. Most real-world applications that handle big data, including interconnected social media and social networks, scientific, engineering, or medical information systems, online e-commerce systems, and most database systems, can be structured into heterogeneous information networks. Therefore, effective analysis of large-scale heterogeneous information networks poses an interesting but critical challenge. In this book, we investigate the principles and methodologies of mining heterogeneous information networks. Departing from many existing network models that view interconnected data as homogeneous graphs or networks, our semi-structured heterogeneous information network model leverages the rich semantics of typed nodes and links in a network and uncovers surprisingly rich knowledge from the network. This semi-structured heterogeneous network modeling leads to a series of new principles and powerful methodologies for mining interconnected data, including: (1) rank-based clustering and classification; (2) meta-path-based similarity search and mining; (3) relation strength-aware mining, and many other potential developments. This book introduces this new research frontier and points out some promising research directions. Table of Contents: Introduction / Ranking-Based Clustering / Classification of Heterogeneous Information Networks / Meta-Path-Based Similarity Search / Meta-Path-Based Relationship Prediction / Relation Strength-Aware Clustering with Incomplete Attributes / User-Guided Clustering via Meta-Path Selection / Research Frontiers


Network Embedding

Network Embedding

Author: Cheng Yang

Publisher: Morgan & Claypool Publishers

Published: 2021-03-25

Total Pages: 244

ISBN-13: 1636390455

DOWNLOAD EBOOK

This is a comprehensive introduction to the basic concepts, models, and applications of network representation learning (NRL) and the background and rise of network embeddings (NE). It introduces the development of NE techniques by presenting several representative methods on general graphs, as well as a unified NE framework based on matrix factorization. Afterward, it presents the variants of NE with additional information: NE for graphs with node attributes/contents/labels; and the variants with different characteristics: NE for community-structured/large-scale/heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions. Many machine learning algorithms require real-valued feature vectors of data instances as inputs. By projecting data into vector spaces, representation learning techniques have achieved promising performance in many areas such as computer vision and natural language processing. There is also a need to learn representations for discrete relational data, namely networks or graphs. Network Embedding (NE) aims at learning vector representations for each node or vertex in a network to encode the topologic structure. Due to its convincing performance and efficiency, NE has been widely applied in many network applications such as node classification and link prediction.


Link Mining: Models, Algorithms, and Applications

Link Mining: Models, Algorithms, and Applications

Author: Philip S. Yu

Publisher: Springer Science & Business Media

Published: 2010-09-16

Total Pages: 580

ISBN-13: 1441965157

DOWNLOAD EBOOK

This book offers detailed surveys and systematic discussion of models, algorithms and applications for link mining, focusing on theory and technique, and related applications: text mining, social network analysis, collaborative filtering and bioinformatics.


Mining Text Data

Mining Text Data

Author: Charu C. Aggarwal

Publisher: Springer Science & Business Media

Published: 2012-02-03

Total Pages: 527

ISBN-13: 1461432235

DOWNLOAD EBOOK

Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.


Data Mining in Dynamic Social Networks and Fuzzy Systems

Data Mining in Dynamic Social Networks and Fuzzy Systems

Author: Bhatnagar, Vishal

Publisher: IGI Global

Published: 2013-06-30

Total Pages: 412

ISBN-13: 1466642149

DOWNLOAD EBOOK

Many organizations, whether in the public or private sector, have begun to take advantage of the tools and techniques used for data mining. Utilizing data mining tools, these organizations are able to reveal the hidden and unknown information from available data. Data Mining in Dynamic Social Networks and Fuzzy Systems brings together research on the latest trends and patterns of data mining tools and techniques in dynamic social networks and fuzzy systems. With these improved modern techniques of data mining, this publication aims to provide insight and support to researchers and professionals concerned with the management of expertise, knowledge, information, and organizational development.


Network Data Mining And Analysis

Network Data Mining And Analysis

Author: Ming Gao

Publisher: World Scientific

Published: 2018-09-28

Total Pages: 205

ISBN-13: 9813274972

DOWNLOAD EBOOK

Online social networking sites like Facebook, LinkedIn, and Twitter, offer millions of members the opportunity to befriend one another, send messages to each other, and post content on the site — actions which generate mind-boggling amounts of data every day.To make sense of the massive data from these sites, we resort to social media mining to answer questions like the following:


Social Network Data Analytics

Social Network Data Analytics

Author: Charu C. Aggarwal

Publisher: Springer Science & Business Media

Published: 2011-03-18

Total Pages: 508

ISBN-13: 1441984623

DOWNLOAD EBOOK

Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.