High Pressure Research in Mineral Physics
Author: Murli H. Manghnani
Publisher: American Geophysical Union
Published: 1987
Total Pages: 457
ISBN-13: 0875900666
DOWNLOAD EBOOKRead and Download eBook Full
Author: Murli H. Manghnani
Publisher: American Geophysical Union
Published: 1987
Total Pages: 457
ISBN-13: 0875900666
DOWNLOAD EBOOKAuthor: Yingwei Fei
Publisher: Cambridge University Press
Published: 2022-10-31
Total Pages: 421
ISBN-13: 1108479758
DOWNLOAD EBOOKA comprehensive review of recent advances and new directions in high pressure mineral research using static and dynamic compression methods.
Author: Renata M. Wentzcovitch
Publisher: Walter de Gruyter GmbH & Co KG
Published: 2018-12-17
Total Pages: 504
ISBN-13: 150150844X
DOWNLOAD EBOOKVolume 71 of Reviews in Mineralogy and Geochemistry represents an extensive review of the material presented by the invited speakers at a short course on Theoretical and Computational Methods in Mineral Physics held prior (December 10-12, 2009) to the Annual fall meeting of the American Geophysical Union in San Francisco, California. The meeting was held at the Doubletree Hotel & Executive Meeting Center in Berkeley, California. Contents: Density functional theory of electronic structure: a short course for mineralogists and geophysicists The Minnesota density functionals and their applications to problems in mineralogy and geochemistry Density-functional perturbation theory for quasi-harmonic calculations Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory First principles quasiharmonic thermoelasticity of mantle minerals An overview of quantum Monte Carlo methods Quantum Monte Carlo studies of transition metal oxides Accurate and efficient calculations on strongly correlated minerals with the LDA+U method: review and perspectives Spin-state crossover of iron in lower-mantle minerals: results of DFT+U investigations Simulating diffusion Modeling dislocations and plasticity of deep earth materials Theoretical methods for calculating the lattice thermal conductivity of minerals Evolutionary crystal structure prediction as a method for the discovery of minerals and materials Multi-Mbar phase transitions in minerals Computer simulations on phase transitions in ice Iron at Earth’s core conditions from first principles calculations First-principles molecular dynamics simulations of silicate melts: structural and dynamical properties Lattice dynamics from force-fields as a technique for mineral physics An efficient cluster expansion method for binary solid solutions: application to the halite-silvite, NaCl-KCl, system Large scale simulations Thermodynamics of the Earth’s mantle
Author: Robert Cooper Liebermann
Publisher: MDPI
Published: 2020-12-29
Total Pages: 627
ISBN-13: 303936541X
DOWNLOAD EBOOKThis Special Issue contains original scientific papers in the field of mineral physics (and also rock physics). These papers are grouped into four categories: Reviews, Experimental Science, Theoretical Science and Technological Developments. These papers include those from first authors covering 5 generations of mineral physicists, including contemporaries of Orson [e.g., William Bassett, Frank Stacey], the next generation of leaders in mineral physics throughout the world [e.g., Michael Brown, Eiji Ohtani], current leaders in this field [e.g., Agnes Dewaele, Jun Tsuchiya], senior graduate students [e.g., Jan Borgomano, Vasilije Dobrosavlijevic, Francesca Miozzi], and an undergraduate student [e.g., Tyler Perez]. Mineral physics is the study of mineralogical problems through the application of condensed matter physics. In reality, mineral physicists use not only physics, but also solid-state chemistry; they study not only minerals, but all materials related to natural minerals (e.g., structural analogs, but also glasses, melts and fluids). Mineral and rock physics is intimately connected to many other geoscience disciplines including seismology, planetary science, petrology, geochemistry, geomagnetism, and geodynamics, and even materials and climate science. This book is dedicated to Orson Anderson who died in June 2019 at the age of 94.
Author: S. Mitra
Publisher: Elsevier
Published: 2004-12-11
Total Pages: 1271
ISBN-13: 008045822X
DOWNLOAD EBOOKSignificant achievements have been made at the cross-roads of physics and planetary science. In the second half of the twentieth century, the discipline of planetary sciences has witnessed three major episodes which have revolutionized its approach and content: (i) the plate-tectonic theory, (ii) human landing and discoveries in planetary astronomy and (iii) the extraordinary technical advancement in high P-T studies, which have been abetted by a vast improvement in computational methods. Using these new computational methods, such as first principles including ab initio models, calculations have been made for the electronic structure, bonding, thermal EOS, elasticity, melting, thermal conductivity and diffusivity. In this monograph, the boundaries of the definitions of a petrologist, geochemist, geophysicist or a mineralogist have been willfully eliminated to bring them all under the spectrum of "high-pressure geochemistry" when they deal with any material (quintessentially a chemical assemblage) - terrestrial or extraterrestrial - under the conditions of high-pressure and temperature. Thus, a petrologist using a spectrometer or any instrument for high-pressure studies of a rock or a mineral, or a geochemist using them for chemical synthesis and characterization, is better categorized as a "high-pressure geochemist" rather than any other kind of disciplinarian.The contents of this monograph bring together, under one cover, apparently disparate disciplines like solid-earth geophysics and geochemistry as well as material science and condensed-matter physics to present a thorough overview of high pressure geochemistry. Indeed, such interdisciplinary activities led to the discovery of new phenomena such as high P-T behaviour in metal oxides (e.g. Mott transition), novel transitions such as amorphization, changes in order-disorder in crystals and the anomalous properties of oxide melts.
Author: D.C. Rubie
Publisher: Gulf Professional Publishing
Published: 2004
Total Pages: 662
ISBN-13: 9780444516923
DOWNLOAD EBOOKGeophysical measurements, such as the lateral variations in seismic wave velocities that are imaged by seismic tomography, provide the strongest constraints on the structure of the Earth's deep interior. In order to interpret such measurements in terms of mineralogical/compositional models of the Earth's interior, data on the physical and chemical properties of minerals at high pressures and temperatures are essential. Knowledge of thermodynamics, phase equilibria, crystal chemistry, crystallography, rheology, diffusion and heat transport are required to characterize the structure and dynamics of the Earth's deep interior as well as the processes by which the Earth originally differentiated. Many experimental studies have been made possible only by a range of technical developments in the quest to achieve high pressures and temperatures in the laboratory. At the same time, analytical methods, including X-ray diffraction, a variety of spectroscopic techniques, electron microscopy, ultrasonic interferometry, and methods for rheological investigations have been developed and greatly improved. In recent years, major progress has been made also in the field of computational mineralogy whereby ab initio simulations are used to investigate the structural and dynamical properties of condensed matter at an atomistic level. This volume contains a broad range of contributions that typify and summarize recent progress in the areas of high-pressure mineral physics as well as associated technical developments.
Author: Thomas J. Ahrens
Publisher:
Published: 1995
Total Pages: 0
ISBN-13: 9780875908526
DOWNLOAD EBOOKAuthor: Arnolʹd Sergeevich Marfunin
Publisher: Springer
Published: 1979
Total Pages: 362
ISBN-13:
DOWNLOAD EBOOKAuthor: Alexandra Navrotsky
Publisher: Cambridge University Press
Published: 1994-11-25
Total Pages: 434
ISBN-13: 9780521358941
DOWNLOAD EBOOKWith an approach that stresses the fundamental solid state behaviour of minerals, this 1995 text surveys the physics and chemistry of earth materials.
Author: Hauke Marquardt
Publisher: John Wiley & Sons
Published: 2021-07-07
Total Pages: 32
ISBN-13: 1119528615
DOWNLOAD EBOOKA multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales. Mantle Convection and Surface Expressions brings together perspectives from observational geophysics, numerical modelling, geochemistry, and mineral physics to build a holistic picture of the deep Earth. It explores the dynamic processes occurring in the mantle as well as the associated heat and material cycles. Volume highlights include: Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.