Milling Simulation

Milling Simulation

Author: Weihong Zhang

Publisher: John Wiley & Sons

Published: 2016-06-15

Total Pages: 272

ISBN-13: 1119262909

DOWNLOAD EBOOK

Reliable scheduling in cutting conditions is very important in machining processes, and this requires thorough understanding of the physical behaviors of the machining process, which cannot be achieved without understanding the underlying mechanism of the processes. The book describes the mechanics and dynamics together with the clamping principles in milling processes, and can be used as a guideline for graduate students and research engineers who wish to be effective manufacture engineers and researchers. Many books have focused on common principles, which are suitable for general machining processes, e.g., milling, turning and drilling, etc. This book specifically aims at exploring the mechanics and dynamics of milling processes. Original theoretical derivations and new observations on static cutting force models, dynamic stability models and clamping principles associated with milling processes are classified and detailed. The book is indented as a text for graduate students and machining engineers who wish to intensively learn milling mechanism and machine tool vibration.


Simulation and Tool Path Optimization for the Hexapod Milling Machine

Simulation and Tool Path Optimization for the Hexapod Milling Machine

Author: Shangjian Du

Publisher: Vulkan-Verlag GmbH

Published: 2005

Total Pages: 148

ISBN-13: 9783802787263

DOWNLOAD EBOOK

To fully exploit the advantages of multi-axis machining in a modern production environment, new types of parallel kinematic machines (PKM) and new processing technologies such as those using high speed cutting (HSC) are needed. However, the machining accuracy and hence the process reliability of PKM are still not satisfactory when using today's CAM systems due to the complexity of the dynamic behavior of machine axes. A hybrid simulation method for optimizing tool paths that overcomes the limits of today's CAM systems is presented in this work. Two major independent simulations were performed, to examine the influences on the quality of the final product. It is shown that the kinematics, the dynamics and the stiffness are important factors affecting the accuracy of PKM. These factors can be taken into account, to obtain an accurate modeling of PKM-behavior.


Virtual Machining Using CAMWorks 2018

Virtual Machining Using CAMWorks 2018

Author: Kuang-Hua Chang

Publisher: SDC Publications

Published: 2018

Total Pages: 195

ISBN-13: 1630571512

DOWNLOAD EBOOK

This book is written to help you learn the core concepts and steps used to conduct virtual machining using CAMWorks. CAMWorks is a virtual machining tool designed to increase your productivity and efficiency by simulating machining operations on a computer before creating a physical product. CAMWorks is embedded in SOLIDWORKS as a fully integrated module. CAMWorks provides excellent capabilities for machining simulations in a virtual environment. Capabilities in CAMWorks allow you to select CNC machines and tools, extract or create machinable features, define machining operations, and simulate and visualize machining toolpaths. In addition, the machining time estimated in CAMWorks provides an important piece of information for estimating product manufacturing cost without physically manufacturing the product. The book covers the basic concepts and frequently used commands and options you’ll need to know to advance from a novice to an intermediate level CAMWorks user. Basic concept and commands introduced include extracting machinable features (such as 2.5 axis features), selecting machine and tools, defining machining parameters (such as feedrate), generating and simulating toolpaths, and post processing CL data to output G-codes for support of CNC machining. The concept and commands are introduced in a tutorial style presentation using simple but realistic examples. Both milling and turning operations are included. One of the unique features of this book is the incorporation of the CL (cutter location) data verification by reviewing the G-codes generated from the toolpaths. This helps you understand how the G-codes are generated by using the respective post processors, which is an important step and an ultimate way to confirm that the toolpaths and G-codes generated are accurate and useful. This book is intentionally kept simple. It primarily serves the purpose of helping you become familiar with CAMWorks in conducting virtual machining for practical applications. This is not a reference manual of CAMWorks. You may not find everything you need in this book for learning CAMWorks. But this book provides you with basic concepts and steps in using the software, as well as discussions on the G-codes generated. After going over this book, you will develop a clear understanding in using CAMWorks for virtual machining simulations, and should be able to apply the knowledge and skills acquired to carry out machining assignments and bring machining consideration into product design in general. Who this book is for This book should serve well for self-learners. A self-learner should have a basic physics and mathematics background. We assume that you are familiar with basic manufacturing processes, especially milling and turning. In addition, we assume you are familiar with G-codes. A self-learner should be able to complete the ten lessons of this book in about forty hours. This book also serves well for class instructions. Most likely, it will be used as a supplemental reference for courses like CNC Machining, Design and Manufacturing, Computer-Aided Manufacturing, or Computer-Integrated Manufacturing. This book should cover four to five weeks of class instructions, depending on the course arrangement and the technical background of the students. What is virtual machining? Virtual machining is the use of simulation-based technology, in particular, computer-aided manufacturing (CAM) software, to aid engineers in defining, simulating, and visualizing machining operations for parts or assembly in a computer, or virtual, environment. By using virtual machining, the machining process can be defined and verified early in the product design stage. Some, if not all, of the less desirable design features in the context of part manufacturing, such as deep pockets, holes or fillets of different sizes, or cutting on multiple sides, can be detected and addressed while the product design is still being finalized. In addition, machining-related problems, such as undesirable surface finish, surface gouging, and tool or tool holder colliding with stock or fixtures, can be identified and eliminated before mounting a stock on a CNC machine at shop floor. In addition, manufacturing cost, which constitutes a significant portion of the product cost, can be estimated using the machining time estimated in the virtual machining simulation. Virtual machining allows engineers to conduct machining process planning, generate machining toolpaths, visualize and simulate machining operations, and estimate machining time. Moreover, the toolpaths generated can be converted into NC codes to machine functional parts as well as die or mold for part production. In most cases, the toolpath is generated in a so-called CL data format and then converted to G-codes using respective post processors.


Transactions on Engineering Technologies

Transactions on Engineering Technologies

Author: Gi-Chul Yang

Publisher: Springer

Published: 2015-05-07

Total Pages: 760

ISBN-13: 9401798044

DOWNLOAD EBOOK

This volume contains fifty-one revised and extended research articles written by prominent researchers participating in the international conference on Advances in Engineering Technologies and Physical Science (London, UK, 2-4 July, 2014), under the World Congress on Engineering 2014 (WCE 2014). Topics covered include mechanical engineering, bioengineering, internet engineering, wireless networks, image engineering, manufacturing engineering and industrial applications. The book offers an overview of the tremendous advances made recently in engineering technologies and the physical sciences and their applications and also serves as an excellent reference for researchers and graduate students working in these fields.


High-Speed Machining

High-Speed Machining

Author: Kapil Gupta

Publisher: Academic Press

Published: 2020-01-31

Total Pages: 328

ISBN-13: 0128150211

DOWNLOAD EBOOK

High-Speed Machining covers every aspect of this important subject, from the basic mechanisms of the technology, right through to possible avenues for future research. This book will help readers choose the best method for their particular task, how to set up their equipment to reduce chatter and wear, and how to use simulation tools to model high-speed machining processes. The different applications of each technology are discussed throughout, as are the latest findings by leading researchers in this field. For any researcher looking to understand this topic, any manufacturer looking to improve performance, or any manager looking to upgrade their plant, this is the most comprehensive and authoritative guide available. - Summarizes important R&D from around the world, focusing on emerging topics like intelligent machining - Explains the latest best practice for the optimization of high-speed machining processes for greater energy efficiency and machining precision - Provides practical advice on the testing and monitoring of HSM machines, drawing on practices from leading companies


Chatter and Machine Tools

Chatter and Machine Tools

Author: Brian Stone

Publisher: Springer

Published: 2014-06-13

Total Pages: 268

ISBN-13: 3319052365

DOWNLOAD EBOOK

Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.


Intelligent Fixtures for the Manufacturing of Low Rigidity Components

Intelligent Fixtures for the Manufacturing of Low Rigidity Components

Author: Hans Christian Moehring

Publisher: Springer

Published: 2017-08-28

Total Pages: 203

ISBN-13: 3319452916

DOWNLOAD EBOOK

The book summarizes the results of the European research project "Intelligent fixtures for the manufacturing of low rigidity components" (INTEFIX). The structure of the book follows the sub-projects which are dedicated to case studies within the scenarios "vibrations", "deformations" and "positioning". The INTEFIX project deals with the development and analysis of several exemplary types of intelligent, sensor and actuator integrated fixtures for the clamping of sensitive workpieces in cutting machine tools. Thus, the book gives a representative overview about this innovative field of technology. The demands of the case studies are described and the technological approaches and solutions are introduced. Furthermore, innovative methods for the design and optimization of intelligent fixtures are presented.


Discrete Event Simulations

Discrete Event Simulations

Author: Eldin Wee Chuan Lim

Publisher: BoD – Books on Demand

Published: 2012-09-06

Total Pages: 212

ISBN-13: 9535107410

DOWNLOAD EBOOK

The Discrete Event Simulation (DES) method has received widespread attention and acceptance by both researchers and practitioners in recent years. The range of application of DES spans across many different disciplines and research fields. In research, further development and advancements of the basic DES algorithm continue to be sought while various hybrid methods derived by combining DES with other simulation techniques continue to be developed. This book presents state-of-the-art contributions on fundamental development of the DES method, novel integration of the method with other modeling techniques as well as applications towards simulating and analyzing the performances of various types of systems. This book will be of interest to undergraduate and graduate students, researchers as well as professionals who are actively engaged in DES related work.


Computational Design and Digital Manufacturing

Computational Design and Digital Manufacturing

Author: Panagiotis Kyratsis

Publisher: Springer Nature

Published: 2023-02-02

Total Pages: 266

ISBN-13: 3031211677

DOWNLOAD EBOOK

This book presents the latest advances in computational and parametric design engineering, as well as digital tools related to manufacturing. It covers design and manufacturing process such as CAD-based design/manufacturing, parametric design, algorithmic design and process automation, and several digital tools and applications.


Thermal Effects in Complex Machining Processes

Thermal Effects in Complex Machining Processes

Author: D Biermann

Publisher: Springer

Published: 2017-08-31

Total Pages: 404

ISBN-13: 3319571206

DOWNLOAD EBOOK

This contributed volume contains the research results of the priority programme (PP) 1480 “Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes", funded by the German Research Society (DFG). The topical focus of this programme is the simulation-based prediction and compensation of thermally induced workpiece deviations and subsurface damage effects. The approach to the topic is genuinely interdisciplinary, covering all relevant machining operations such as turning, milling, drilling and grinding. The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students.