Mild Differentiability Conditions for Newton's Method in Banach Spaces

Mild Differentiability Conditions for Newton's Method in Banach Spaces

Author: José Antonio Ezquerro Fernandez

Publisher: Springer Nature

Published: 2020-07-03

Total Pages: 189

ISBN-13: 3030487024

DOWNLOAD EBOOK

In this book the authors use a technique based on recurrence relations to study the convergence of the Newton method under mild differentiability conditions on the first derivative of the operator involved. The authors’ technique relies on the construction of a scalar sequence, not majorizing, that satisfies a system of recurrence relations, and guarantees the convergence of the method. The application is user-friendly and has certain advantages over Kantorovich’s majorant principle. First, it allows generalizations to be made of the results obtained under conditions of Newton-Kantorovich type and, second, it improves the results obtained through majorizing sequences. In addition, the authors extend the application of Newton’s method in Banach spaces from the modification of the domain of starting points. As a result, the scope of Kantorovich’s theory for Newton’s method is substantially broadened. Moreover, this technique can be applied to any iterative method. This book is chiefly intended for researchers and (postgraduate) students working on nonlinear equations, as well as scientists in general with an interest in numerical analysis.


The Theory and Applications of Iteration Methods

The Theory and Applications of Iteration Methods

Author: Ioannis K. Argyros

Publisher: CRC Press

Published: 2022-01-20

Total Pages: 471

ISBN-13: 1000536750

DOWNLOAD EBOOK

The theory and applications of Iteration Methods is a very fast-developing field of numerical analysis and computer methods. The second edition is completely updated and continues to present the state-of-the-art contemporary theory of iteration methods with practical applications, exercises, case studies, and examples of where and how they can be used. The Theory and Applications of Iteration Methods, Second Edition includes newly developed iteration methods taking advantage of the most recent technology (computers, robots, machines). It extends the applicability of well-established methods by increasing the convergence domain and offers sharper error tolerance. New proofs and ideas for handling convergence are introduced along with a new variety of story problems picked from diverse disciplines. This new edition is for researchers, practitioners, and students in engineering, economics, and computational sciences.


Iterative Methods for Solving Nonlinear Equations and Systems

Iterative Methods for Solving Nonlinear Equations and Systems

Author: Juan R. Torregrosa

Publisher: MDPI

Published: 2019-12-06

Total Pages: 494

ISBN-13: 3039219405

DOWNLOAD EBOOK

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.


Numerical Methods for Equations and its Applications

Numerical Methods for Equations and its Applications

Author: Ioannis K. Argyros

Publisher: CRC Press

Published: 2012-06-05

Total Pages: 476

ISBN-13: 1578087538

DOWNLOAD EBOOK

This book introduces advanced numerical-functional analysis to beginning computer science researchers. The reader is assumed to have had basic courses in numerical analysis, computer programming, computational linear algebra, and an introduction to real, complex, and functional analysis. Although the book is of a theoretical nature, each chapter contains several new theoretical results and important applications in engineering, in dynamic economics systems, in input-output system, in the solution of nonlinear and linear differential equations, and optimization problem.


Topics in Integral and Integro-Differential Equations

Topics in Integral and Integro-Differential Equations

Author: Harendra Singh

Publisher: Springer Nature

Published: 2021-04-16

Total Pages: 255

ISBN-13: 3030655091

DOWNLOAD EBOOK

This book includes different topics associated with integral and integro-differential equations and their relevance and significance in various scientific areas of study and research. Integral and integro-differential equations are capable of modelling many situations from science and engineering. Readers should find several useful and advanced methods for solving various types of integral and integro-differential equations in this book. The book is useful for graduate students, Ph.D. students, researchers and educators interested in mathematical modelling, applied mathematics, applied sciences, engineering, etc. Key Features • New and advanced methods for solving integral and integro-differential equations • Contains comparison of various methods for accuracy • Demonstrates the applicability of integral and integro-differential equations in other scientific areas • Examines qualitative as well as quantitative properties of solutions of various types of integral and integro-differential equations


Computational Methods in Nonlinear Analysis

Computational Methods in Nonlinear Analysis

Author: Ioannis K. Argyros

Publisher: World Scientific

Published: 2013

Total Pages: 592

ISBN-13: 9814405833

DOWNLOAD EBOOK

The field of computational sciences has seen a considerable development in mathematics, engineering sciences, and economic equilibrium theory. Researchers in this field are faced with the problem of solving a variety of equations or variational inequalities. We note that in computational sciences, the practice of numerical analysis for finding such solutions is essentially connected to variants of Newton's method. The efficient computational methods for finding the solutions of fixed point problems, nonlinear equations and variational inclusions are the first goal of the present book. The second goal is the applications of these methods in nonlinear problems and the connection with fixed point theory. This book is intended for researchers in computational sciences, and as a reference book for an advanced computational methods in nonlinear analysis. We collect the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces, and present several applications and connections with fixed point theory. The book contains abundant and updated bibliography, and provides comparison between various investigations made in recent years in the field of computational nonlinear analysis.


Newton Methods

Newton Methods

Author: Ioannis K. Argyros

Publisher: Nova Publishers

Published: 2005

Total Pages: 422

ISBN-13: 9781594540523

DOWNLOAD EBOOK

This self-contained treatment offers a contemporary and systematic development of the theory and application of Newton methods, which are undoubtedly the most effective tools for solving equations appearing in computational sciences. Its focal point resides in an exhaustive analysis of the convergence properties of several Newton variants used in connection to specific real life problems originated from astrophysics, engineering, mathematical economics and other applied areas. What distinguishes this book from others is the fact that the weak convergence conditions inaugurated here allow for a wider applicability of Newton methods; finer error bounds on the distances involved, and a more precise information on the location of the solution. These factors make this book ideal for researchers, practitioners and students.


Fixed Point Theory and Applications

Fixed Point Theory and Applications

Author: Yeol Je Cho

Publisher: Nova Publishers

Published: 2007-08

Total Pages: 216

ISBN-13: 9781594548772

DOWNLOAD EBOOK

This volume deals with new topics in the areas of fixed point theory, variational inequality and complementarity problem theory, non-linear ergodic theory, difference, differential and integral equations, control and optimisation theory, dynamic system theory, inequality theory, stochastic analysis and probability theory, and their applications.


Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Author: Hemen Dutta

Publisher: Springer Nature

Published: 2019-08-23

Total Pages: 912

ISBN-13: 3030152421

DOWNLOAD EBOOK

This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers’ understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book’s main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own. Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.


Nonlinear Equations and Optimisation

Nonlinear Equations and Optimisation

Author: L.T. Watson

Publisher: Elsevier

Published: 2001-03-14

Total Pages: 382

ISBN-13: 0080929540

DOWNLOAD EBOOK

/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! In one of the papers in this collection, the remark that "nothing at all takes place in the universe in which some rule of maximum of minimum does not appear" is attributed to no less an authority than Euler. Simplifying the syntax a little, we might paraphrase this as Everything is an optimization problem. While this might be something of an overstatement, the element of exaggeration is certainly reduced if we consider the extended form: Everything is an optimization problem or a system of equations. This observation, even if only partly true, stands as a fitting testimonial to the importance of the work covered by this volume. Since the 1960s, much effort has gone into the development and application of numerical algorithms for solving problems in the two areas of optimization and systems of equations. As a result, many different ideas have been proposed for dealing efficiently with (for example) severe nonlinearities and/or very large numbers of variables. Libraries of powerful software now embody the most successful of these ideas, and one objective of this volume is to assist potential users in choosing appropriate software for the problems they need to solve. More generally, however, these collected review articles are intended to provide both researchers and practitioners with snapshots of the 'state-of-the-art' with regard to algorithms for particular classes of problem. These snapshots are meant to have the virtues of immediacy through the inclusion of very recent ideas, but they also have sufficient depth of field to show how ideas have developed and how today's research questions have grown out of previous solution attempts. The most efficient methods for local optimization, both unconstrained and constrained, are still derived from the classical Newton approach. As well as dealing in depth with the various classical, or neo-classical, approaches, the selection of papers on optimization in this volume ensures that newer ideas are also well represented. Solving nonlinear algebraic systems of equations is closely related to optimization. The two are not completely equivalent, however, and usually something is lost in the translation. Algorithms for nonlinear equations can be roughly classified as locally convergent or globally convergent. The characterization is not perfect. Locally convergent algorithms include Newton's method, modern quasi-Newton variants of Newton's method, and trust region methods. All of these approaches are well represented in this volume.