"A Spin-Echo Small Angle Scattering (SESANS) instrument is capable of studying samples containing large inhomogeneities, large in a sense that they extend across the mesoscopic and microscopic domains. Thus, being applicable to samples of polymers, colloids, dairy products, powders, clays, etc. All of this in a simple and more direct way than existing small-angle neutron-scattering instruments. In essence, there is confidence enough to start exploring the real samples - samples that SESANS is made for. The SESANS experiments conducted and presented in this book will bring insight in the relationship between micro- and macroscopics of fine cohesive powders. The aim is to inspire for future research on samples made up of large disordered heterogeneities through discussing many of the correlation functions expected in these systems."--BOOK JACKET.
Solidification is one of the oldest processes for producing useful implements and remains one of the most important modern commercial processes. This text describes the fundamentals of the technology in a coherent way, using consistent notation.
The recent introduction of the “nano” dimension to pyrotechnics has made it possible to develop a new family of highly reactive substances: nanothermites. These have a chemical composition that is comparable to that of thermites at submillimeter or micrometric granulometry, but with a morphology having a much increased degree of homogeneity. This book discusses the methods of preparation of these energetic nanomaterials, their specific properties, and the different safety aspects inherent in their manipulation.
Overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.
Metallic Powders for Additive Manufacturing Overview of successful pathways for producing metal powders for additive manufacturing of high-performance metallic parts and components with tailored properties Metallic Powders for Additive Manufacturing introduces the readers to the science and technology of atomized metal powders beyond empirical knowledge and the fundamental relationships among the chemistry, microstructure, and morphology of atomized metallic powders and their behavior during additive manufacturing. The text sets a foundation of the underlying science that controls the formation and microstructure of atomized metallic droplets, including the relations among the properties of metallic powders, their performance during the manufacturing processes, and the resulting products. Other topics covered include the influence of powder on defect formation, residual stress, mechanical behavior, and physical properties. The concluding two chapters encompass considerations of broader societal implications and overarching themes, including the exploration of alternative feedstock materials, economic analysis, and sustainability assessment. These chapters offer valuable perspectives on the prospective trajectory of the field. Written by a team of experienced and highly qualified professors and academics, Metallic Powders for Additive Manufacturing includes information on: Atomization techniques such as Vacuum Induction Gas Atomization (VIGA), Electrode Induction Melting Gas Atomization (EIMGA), and Plasma Rotating Electrode Process (PREP) Atomization science and technology, covering control of atomization parameters, powder size distribution, effect of processing variables, and theoretical models of atomization Heat transfer and solidification of droplets, covering nucleation, microstructure development, and important thermal and solidification conditions during atomization Atomization of Al, Fe, Ni, Co, Ti, and high entropy alloys, as well as composite powders for additive manufacturing, and guidelines for atomization equipment and powder handling Fundamental processing principles in a variety of metal additive manufacturing processes Powder characteristics and requirements for different additive manufacturing processes Effect of powder chemistry and physical characteristics on additive manufacturing processes, and the microstructure and properties of the built parts Evaluation of alternative feedstock sources for metal additive manufacturing, beyond gas atomized powder Economic and sustainability perspectives on powder production and additive manufacturing Metallic Powders for Additive Manufacturing is an excellent combination of rigorous fundamentals and a practice-oriented and forward-looking resource on the subject for materials scientists and practicing engineers seeking to understand, optimize, and further develop the field of powder production and additive manufacturing.
Sintering is the process of forming materials and components from a powder under the action of thermal energy. It is a key materials science subject: most ceramic materials and many specialist metal powder products for use in key industries such as electronics, automotive and aerospace are formed this way. Written by one of the leading experts in the field, this book offers an unrivalled introduction to sintering and sintering processes for students of materials science and engineering, and practicing engineers in industry. The book is unique in providing a complete grounding in the principles of sintering and equal coverage of the three key sintering processes: densification, grain growth and microstructure. Students and professional engineers alike will be attracted by the emphasis on developing a detailed understanding of the theory and practical processes of sintering, the balanced coverage of ceramic and metal sintering, and the accompanying examination questions with selected solutions. - Delivering unrivalled depth of coverage on the basis of sintering, science, including thermodynamics and polycrystalline microstructure. - Unique in its balanced coverage of the three key sintering elements - densification, grain growth and microstructure. - A key reference for students and engineers in materials science and engineering, accompanied by examination questions and selected solutions.
This useful reference is the first book to address key aspects of food powder technology. It assembles organized and updated information on the physical properties, production, and functionality of food powder, previously unavailable in book form.
Handbook of Food Powders: Chemistry and Technology, Second Edition covers current developments in food powder technology, such as Microbial decontamination of food powders, Gas and oil encapsulated powders, and Plant-based protein powders among other important topics. Sections introduce processing and handling technologies for food powders, focus on powder properties, including surface composition, rehydration and techniques to analyze the particle size of food powders, and highlight specialty food powders such as dairy powders, fruit and vegetable powders and coating foods with powders. Edited by a team of international experts in the field, this book continues to be the only quality reference on food powder technology available for the audiences of professionals in the food powder production and handling industries. It is also ideal for development and quality control professionals in the food industry who use powders in foods, and for researchers, scientists and academics interested in the field. - Introduces six new chapters that incorporate the current developments in food powder technology - Examines powder properties, including surface composition, shelf life and techniques used to examine particle size - Focuses on specialty powders such as dairy, infant formulas, powdered egg, fruit and vegetable, and culinary and specialty products
Provides the most recent developments in microscopy techniques and types of analysis used to study the microstructure of dairy products This comprehensive and timely text focuses on the microstructure analyses of dairy products as well as on detailed microstructural aspects of them. Featuring contributions from a global team of experts, it offers great insight into the understanding of different phenomena that relate to the functional and biochemical changes during processing and subsequent storage. Structured into two parts, Microstructure of Dairy Products begins with an overview of microscopy techniques and software used for microstructural analyses. It discusses, in detail, different types of the following techniques, such as: light microscopy (including bright field, polarized, and confocal scanning laser microscopy) and electron microscopy (mainly scanning and transmission electron microscopy). The description of these techniques also includes the staining procedures and sample preparation methods developed. Emerging microscopy techniques are also covered, reflecting the latest advances in this field. Part 2 of the book focuses on the microstructure of various dairy foods, dividing each into sections related to the microstructure of milk, cheeses, yogurts, powders, and fat products, ice cream and frozen dairy desserts, dairy powders and selected traditional Indian dairy products. In addition, there is a review of the localization of microorganism within the microstructure of various dairy products. The last chapter discusses the challenges and future trends of the microstructure of dairy products. Presents complete coverage of the latest developments in dairy product microscopy techniques Details the use of microscopy techniques in structural analysis An essential purchase for companies, researchers, and other professionals in the dairy sector Microstructure of Dairy Products is an excellent resource for food scientists, technologists, and chemists—and physicists, rheologists, and microscopists—who deal in dairy products.