Microfluidics, BioMEMS, and Medical Microsystems
Author: Society of Photo-optical Instrumentation Engineers
Publisher: SPIE-International Society for Optical Engineering
Published: 2003
Total Pages: 410
ISBN-13: 9780819447821
DOWNLOAD EBOOKRead and Download eBook Full
Author: Society of Photo-optical Instrumentation Engineers
Publisher: SPIE-International Society for Optical Engineering
Published: 2003
Total Pages: 410
ISBN-13: 9780819447821
DOWNLOAD EBOOKAuthor: Bonnie Lynne Gray
Publisher:
Published: 2018
Total Pages:
ISBN-13: 9781510614680
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 2018
Total Pages:
ISBN-13: 9781510614673
DOWNLOAD EBOOKAuthor: Ellis Meng
Publisher: CRC Press
Published: 2011-06-22
Total Pages: 410
ISBN-13: 1420051237
DOWNLOAD EBOOKPoised to dramatically impact human health, biomedical microsystems (bioMEMS) technologies incorporate various aspects from materials science, biology, chemistry, physics, medicine, and engineering. Reflecting the highly interdisciplinary nature of this area, Biomedical Microsystems covers the fundamentals of miniaturization, biomaterials, microfabrication, and nanotechnology, along with relevant applications. Written by an active researcher who was recently named one of Technology Review’s Young Innovators Under 35, the book begins with an introduction to the benefits of miniaturization. It then introduces materials, fabrication technology, and the necessary components of all bioMEMS. The author also covers fundamental principles and building blocks, including microfluidic concepts, lab-on-a-chip systems, and sensing and detection methods. The final chapters explore several important applications of bioMEMS, such as microdialysis, catheter-based sensors, MEMS implants, neural probes, and tissue engineering. For readers with a limited background in MEMS and bioMEMS, this book provides a practical introduction to the technology used to make these devices, the principles that govern their operation, and examples of their application. It offers a starting point for understanding advanced topics and encourages readers to begin to formulate their own ideas about the design of novel bioMEMS. A solutions manual is available for instructors who want to convert this reference to classroom use.
Author: Samira Hosseini
Publisher: Springer Nature
Published: 2020-08-13
Total Pages: 186
ISBN-13: 9811563829
DOWNLOAD EBOOKThis book highlights the latest advances in bioMEMS for biosensing applications. It comprehensively reviews different detection methods, including colorimetric, fluorescence, luminescence, bioluminescence, chemiluminescence, biochemiluminescence, and electrochemiluminescence, and presents various bioMEMS for each, together with recent examples. The book also offers an overview of the history of BioMEMS and the design and manufacture of the first bioMEMS-based devices.
Author: Tuhin Subhra Santra
Publisher: CRC Press
Published: 2023-08-15
Total Pages: 355
ISBN-13: 1000916650
DOWNLOAD EBOOKThis collection discusses various micro/nanodevice design and fabrication for single-biomolecules detection. It will be an ideal reference text for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. This book- Discusses techniques of single-biomolecule detection, their advantages, limitations, and applications. Covers comprehensively several electrochemical detection techniques. Provides single-molecule separation, sensing, imaging, sequencing, and analysis in detail. Examines different types of cantilever-based biomolecule sensing, and its limitations. Single Biomolecule Detection and Analysis covers single-biomolecule detection and characterization using micro/nanotechnologies and micro/nanofluidic devices, electrical and magnetic detection technologies, microscopy and spectroscopy techniques, single biomolecule optical, and nanopore devices. The text covers key important biosensors-based detection, stochastic optical reconstruction microscopy-based detection, electrochemical detection, metabolic engineering of animal cells, single-molecule intracellular delivery and tracking, terahertz spectroscopy-based detection, total internal reflection fluorescence (TIFR) detection, and Fluorescence Correlation Spectroscopy (FCS) detection. The text will be useful for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. Discussing chemical process, physical process, separation, sensing, imaging, sequencing, and analysis of single-molecule detection, this text will be useful for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. It covers microscopy and spectroscopy techniques for single-biomolecule detection, analysis, and their biomedical engineering applications.
Author: Dongqing Li
Publisher: Springer Science & Business Media
Published: 2008-08-06
Total Pages: 2242
ISBN-13: 0387324682
DOWNLOAD EBOOKCovering all aspects of transport phenomena on the nano- and micro-scale, this encyclopedia features over 750 entries in three alphabetically-arranged volumes including the most up-to-date research, insights, and applied techniques across all areas. Coverage includes electrical double-layers, optofluidics, DNC lab-on-a-chip, nanosensors, and more.
Author: Bastian E. Rapp
Publisher: Elsevier
Published: 2022-10-07
Total Pages: 850
ISBN-13: 0128240237
DOWNLOAD EBOOKMicrofluidics: Modeling, Mechanics and Mathematics, Second Edition provides a practical, lab-based approach to nano- and microfluidics, including a wealth of practical techniques, protocols and experiments ready to be put into practice in both research and industrial settings. This practical approach is ideally suited to researchers and R&D staff in industry. Additionally, the interdisciplinary approach to the science of nano- and microfluidics enables readers from a range of different academic disciplines to broaden their understanding. Alongside traditional fluid/transport topics, the book contains a wealth of coverage of materials and manufacturing techniques, chemical modification/surface functionalization, biochemical analysis, and the biosensors involved. This fully updated new edition also includes new sections on viscous flows and centrifugal microfluidics, expanding the types of platforms covered to include centrifugal, capillary and electro kinetic platforms. - Provides a practical guide to the successful design and implementation of nano- and microfluidic processes (e.g., biosensing) and equipment (e.g., biosensors, such as diabetes blood glucose sensors) - Provides techniques, experiments and protocols that are ready to be put to use in the lab, or in an academic or industry setting - Presents a collection of 3D-CAD and image files on a companion website
Author: Chandra K. Dixit
Publisher: Springer
Published: 2016-10-13
Total Pages: 256
ISBN-13: 3319400363
DOWNLOAD EBOOKThis book describes novel microtechnologies and integration strategies for developing a new class of assay systems to retrieve desired health information from patients in real-time. The selection and integration of sensor components and operational parameters for developing point-of-care (POC) are also described in detail. The basics that govern the microfluidic regimen and the techniques and methods currently employed for fabricating microfluidic systems and integrating biosensors are thoroughly covered. This book also describes the application of microfluidics in the field of cell and molecular biology, single cell biology, disease diagnostics, as well as the commercially available systems that have been either introduced or have the potential of being used in research and development. This is an ideal book for aiding biologists in understanding the fundamentals and applications of microfluidics. This book also: Describes the preparatory methods for developing 3-dimensional microfluidic structures and their use for Lab-on-a-Chip design Explains the significance of miniaturization and integration of sensing components to develop wearable sensors for point-of-care (POC) Demonstrates the application of microfluidics to life sciences and analytical chemistry, including disease diagnostics and separations Motivates new ideas related to novel platforms, valving technology, miniaturized transduction methods, and device integration to develop next generation sequencing Discusses future prospects and challenges of the field of microfluidics in the areas of life sciences in general and diagnostics in particular
Author: Albert van den Berg
Publisher: Royal Society of Chemistry
Published: 2014-11-19
Total Pages: 323
ISBN-13: 1849737592
DOWNLOAD EBOOKLab-on-a-chip devices for point of care diagnostics have been present in clinics for several years now. Alongside their continual development, research is underway to bring the organs and tissue on-a-chip to the patient, amongst other medical applications of microfluidics. This book provides the reader with a comprehensive review of the latest developments in the application of microfluidics to medicine and is divided into three main sections. The first part of the book discusses the state-of-the-art in organs and tissue on a chip; the second provides a thorough background to microfluidics for medicine, and the third (and largest) section provides numerous examples of point-of-care diagnostics. Written with students and practitioners in mind, and with contributions from the leaders in the field across the globe, this book provides a complete digest of the state-of-the-art in microfluidics medical devices and will provide a handy resource for any laboratory or clinic involved in the development or application of such devices.