BioMEMS

BioMEMS

Author: Samira Hosseini

Publisher: Springer Nature

Published: 2020-08-13

Total Pages: 186

ISBN-13: 9811563829

DOWNLOAD EBOOK

This book highlights the latest advances in bioMEMS for biosensing applications. It comprehensively reviews different detection methods, including colorimetric, fluorescence, luminescence, bioluminescence, chemiluminescence, biochemiluminescence, and electrochemiluminescence, and presents various bioMEMS for each, together with recent examples. The book also offers an overview of the history of BioMEMS and the design and manufacture of the first bioMEMS-based devices.


Biomedical Microsystems

Biomedical Microsystems

Author: Ellis Meng

Publisher: CRC Press

Published: 2011-06-22

Total Pages: 410

ISBN-13: 1420051237

DOWNLOAD EBOOK

Poised to dramatically impact human health, biomedical microsystems (bioMEMS) technologies incorporate various aspects from materials science, biology, chemistry, physics, medicine, and engineering. Reflecting the highly interdisciplinary nature of this area, Biomedical Microsystems covers the fundamentals of miniaturization, biomaterials, microfabrication, and nanotechnology, along with relevant applications. Written by an active researcher who was recently named one of Technology Review’s Young Innovators Under 35, the book begins with an introduction to the benefits of miniaturization. It then introduces materials, fabrication technology, and the necessary components of all bioMEMS. The author also covers fundamental principles and building blocks, including microfluidic concepts, lab-on-a-chip systems, and sensing and detection methods. The final chapters explore several important applications of bioMEMS, such as microdialysis, catheter-based sensors, MEMS implants, neural probes, and tissue engineering. For readers with a limited background in MEMS and bioMEMS, this book provides a practical introduction to the technology used to make these devices, the principles that govern their operation, and examples of their application. It offers a starting point for understanding advanced topics and encourages readers to begin to formulate their own ideas about the design of novel bioMEMS. A solutions manual is available for instructors who want to convert this reference to classroom use.


Open Microfluidics

Open Microfluidics

Author: Jean Berthier

Publisher: John Wiley & Sons

Published: 2016-07-20

Total Pages: 384

ISBN-13: 1118720822

DOWNLOAD EBOOK

Open microfluidics or open-surface is becoming fundamental in scientific domains such as biotechnology, biology and space. First, such systems and devices based on open microfluidics make use of capillary forces to move fluids, without any need for external energy. Second, the "openness" of the flow facilitates the accessibility to the liquid in biotechnology and biology, and reduces the weight in space applications. This book has been conceived to give the reader the fundamental basis of open microfluidics. It covers successively The theory of spontaneous capillary flow, with the general conditions for spontaneous capillary flow, and the dynamic aspects of such flows. The formation of capillary filaments which are associated to small contact angles and sharp grooves. The study of capillary flow in open rectangular, pseudo-rectangular and trapezoidal open microchannels. The dynamics of open capillary flows in grooves with a focus on capillary resistors. The case of very viscous liquids is analyzed. An analysis of suspended capillary flows: such flows move in suspended channels devoid of top cover and bottom plate. Their accessibility is reinforced, and such systems are becoming fundamental in biology. An analysis of “rails” microfluidics, which are flows that move in channels devoid of side walls. This geometry has the advantage to be compatible with capillary networks, which are now of great interest in biotechnology, for molecular detection for example. Paper-based microfluidics where liquids wick flat paper matrix. Applications concern bioassays such as point of care devices (POC). Thread-based microfluidics is a new domain of investigation. It is seeing presently many new developments in the domain of separation and filtration, and opens the way to smart bandages and tissue engineering. The book is intended to cover the theoretical aspects of open microfluidics, experimental approaches, and examples of application.


Microfabrication for Microfluidics

Microfabrication for Microfluidics

Author: Sang-Joon John Lee

Publisher: Artech House

Published: 2010

Total Pages: 276

ISBN-13: 1596934727

DOWNLOAD EBOOK

Providing a definitive source of knowledge about the principles, materials, and process techniques used in the fabrication of microfluidics, this practical volume is a must for your reference shelf. The book focuses on fabrication, but also covers the basic purpose, benefits, and limitations of the fabricated structures as they are applied to microfluidic sensor and actuator functions. You find guidance on rapidly assessing options and tradeoffs for the selection of a fabrication method with clear tabulated process comparisons.


Microfluidics and BioMEMS Applications

Microfluidics and BioMEMS Applications

Author: Francis E. H. Tay

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 346

ISBN-13: 1475735340

DOWNLOAD EBOOK

Microfluidics and BioMEMS Applications central idea is on microfluidics, a relatively new research field which finds its niche in biomedical devices, especially on lab-on-a-chip and related products. Being the essential component in providing driving fluidic flows, an example of micropump is chosen to illustrate a complete cycle in development of microfluidic devices which include literature review, designing and modelling, fabrication and testing. A few articles are included to demonstrate the idea of tackling this research problem, and they cover the main development scope discussed earlier as well as other advanced modelling schemes for microfluidics and beyond. Scientists and students working in the areas of MEMS and microfluidics will benefit from this book, which may serve both communities as both a reference monograph and a textbook for courses in numerical simulation, and design and development of microfluidic devices.


Nanoscience

Nanoscience

Author: Patrick Boisseau

Publisher: Springer Science & Business Media

Published: 2009-10-14

Total Pages: 1220

ISBN-13: 3540886338

DOWNLOAD EBOOK

Nanobiotechnology is a rapidly developing field of research with new applications constantly emerging. This book presents the basics, fundamental results and latest achievements of nanobiotechnological research. It extends as far as promising applications of new nanomaterials and newly discovered nanoeffects. Additionally, it presents a large variety of nanobio-analysis methods.


More than Moore

More than Moore

Author: Guo Qi Zhang

Publisher: Springer Science & Business Media

Published: 2010-01-23

Total Pages: 338

ISBN-13: 0387755934

DOWNLOAD EBOOK

In the past decades, the mainstream of microelectronics progression was mainly powered by Moore's law focusing on IC miniaturization down to nano scale. However, there is a fast increasing need for "More than Moore" (MtM) products and technology that are based upon or derived from silicon technologies, but do not simply scale with Moore’s law. This book provides new vision, strategy and guidance for the future technology and business development of micro/nanoelectronics.


Proceedings of the 1st International Conference on Fluid, Thermal and Energy Systems

Proceedings of the 1st International Conference on Fluid, Thermal and Energy Systems

Author: Sudev Das

Publisher: Springer Nature

Published: 2024-01-17

Total Pages: 840

ISBN-13: 981995990X

DOWNLOAD EBOOK

This book comprises the proceedings of the 1st International Conference on Fluid, Thermal and Energy Systems. The contents of this book focus on phase change heat transfer, advanced energy systems, separated flows, turbulence and multi-phase modeling, computational fluid flow and heat transfer, thermal energy storage systems, integrated energy systems, nuclear thermal hydraulics, heat transfer in nanofluids, etc. This book serves as a useful reference to researchers, academicians, and students interested in the broad field of thermo-fluid science and engineering.