An Introduction to Microelectromechanical Systems Engineering

An Introduction to Microelectromechanical Systems Engineering

Author: Nadim Maluf

Publisher: Artech House

Published: 2004

Total Pages: 312

ISBN-13: 9781580535915

DOWNLOAD EBOOK

Bringing you up-to-date with the latest developments in MEMS technology, this major revision of the best-selling An Introduction to Microelectromechanical Systems Engineering offers you a current understanding of this cutting-edge technology. You gain practical knowledge of MEMS materials, design, and manufacturing, and learn how it is being applied in industrial, optical, medical and electronic markets. The second edition features brand new sections on RF MEMS, photo MEMS, micromachining on materials other than silicon, reliability analysis, plus an expanded reference list. With an emphasis on commercialized products, this unique resource helps you determine whether your application can benefit from a MEMS solution, understand how other applications and companies have benefited from MEMS, and select and define a manufacturable MEMS process for your application. You discover how to use MEMS technology to enable new functionality, improve performance, and reduce size and cost. The book teaches you the capabilities and limitations of MEMS devices and processes, and helps you communicate the relative merits of MEMS to your company's management. From critical discussions on design operation and process fabrication of devices and systems, to a thorough explanation of MEMS packaging, this easy-to-understand book clearly explains the basics of MEMS engineering, making it an invaluable reference for your work in the field.


Mems for Biomedical Applications

Mems for Biomedical Applications

Author: Shekhar Bhansali

Publisher: Elsevier

Published: 2012-07-18

Total Pages: 511

ISBN-13: 0857096273

DOWNLOAD EBOOK

The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy


Handbook of Silicon Based MEMS Materials and Technologies

Handbook of Silicon Based MEMS Materials and Technologies

Author: Markku Tilli

Publisher: Elsevier

Published: 2009-12-08

Total Pages: 670

ISBN-13: 0815519885

DOWNLOAD EBOOK

A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: - Silicon as MEMS material - Material properties and measurement techniques - Analytical methods used in materials characterization - Modeling in MEMS - Measuring MEMS - Micromachining technologies in MEMS - Encapsulation of MEMS components - Emerging process technologies, including ALD and porous silicon Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities. - Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland. - Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland. - Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland. - Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan. - Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques - Shows how to protect devices from the environment and decrease package size for dramatic reduction of packaging costs - Discusses properties, preparation, and growth of silicon crystals and wafers - Explains the many properties (mechanical, electrostatic, optical, etc), manufacturing, processing, measuring (incl. focused beam techniques), and multiscale modeling methods of MEMS structures


Advanced Mechatronics and MEMS Devices II

Advanced Mechatronics and MEMS Devices II

Author: Dan Zhang

Publisher: Springer

Published: 2016-10-18

Total Pages: 719

ISBN-13: 3319321803

DOWNLOAD EBOOK

This book introduces the state-of-the-art technologies in mechatronics, robotics, and MEMS devices in order to improve their methodologies. It provides a follow-up to "Advanced Mechatronics and MEMS Devices" (2013) with an exploration of the most up-to-date technologies and their applications, shown through examples that give readers insights and lessons learned from actual projects. Researchers on mechatronics, robotics, and MEMS as well as graduate students in mechanical engineering will find chapters on: Fundamental design and working principles on MEMS accelerometers Innovative mobile technologies Force/tactile sensors development Control schemes for reconfigurable robotic systems Inertial microfluidics Piezoelectric force sensors and dynamic calibration techniques ...And more. Authors explore applications in the areas of agriculture, biomedicine, advanced manufacturing, and space. Micro-assembly for current and future industries is also considered, as well as the design and development of micro and intelligent manufacturing.


Piezoelectric and Acoustic Materials for Transducer Applications

Piezoelectric and Acoustic Materials for Transducer Applications

Author: Ahmad Safari

Publisher: Springer Science & Business Media

Published: 2008-09-11

Total Pages: 483

ISBN-13: 0387765409

DOWNLOAD EBOOK

The book discusses the underlying physical principles of piezoelectric materials, important properties of ferroelectric/piezoelectric materials used in today’s transducer technology, and the principles used in transducer design. It provides examples of a wide range of applications of such materials along with the appertaining rationales. With contributions from distinguished researchers, this is a comprehensive reference on all the pertinent aspects of piezoelectric materials.


Microelectromechanical Systems: Volume 1139

Microelectromechanical Systems: Volume 1139

Author: Srikar Vengallatore

Publisher: Cambridge University Press

Published: 2009-06-23

Total Pages: 272

ISBN-13:

DOWNLOAD EBOOK

Microelectromechanical systems (MEMS) have transitioned from a technology niche to a role of major industrial significance. The worldwide market for MEMS is now approximately $10 billion, and the total value of systems enabled by MEMS is several orders of magnitude higher than this figure. As the market has grown, the material and process sets have broadened and departed from their semiconductor roots. In addition to engineering materials, there is now great interest in integrating multifunctional nanomaterials, smart materials and biomaterials within MEMS/NEMS to enhance functionality, performance and reliability. The opportunities created by this integration have generated a vibrant research community working on new materials and processes. This book reflects the breadth of topics currently under investigation in the field. Novel materials and accompanying processes are discussed, as are more conventional materials and processes. Consistent themes are the need for accurate material property assessment at the relevant length scales and for suitable metrology tools to support the introduction of new materials.


Microelectromechanical Systems and Devices

Microelectromechanical Systems and Devices

Author: Nazmul Islam

Publisher: BoD – Books on Demand

Published: 2012-03-28

Total Pages: 496

ISBN-13: 9535103067

DOWNLOAD EBOOK

The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators.


Silicon Carbide Micro Electromechanical Systems for Harsh Environments

Silicon Carbide Micro Electromechanical Systems for Harsh Environments

Author: Rebecca Cheung

Publisher: Imperial College Press

Published: 2006

Total Pages: 193

ISBN-13: 1860949096

DOWNLOAD EBOOK

This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS. This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product. Sample Chapter(s). Chapter 1: Introduction to Silicon Carbide (SIC) Microelectromechanical Systems (MEMS) (800 KB). Contents: Introduction to Silicon Carbide (SiC) Microelectromechanical Systems (MEMS) (R Cheung); Deposition Techniques for SiC MEMS (C A Zorman et al.); Review of Issues Pertaining to the Development of Contacts to Silicon Carbide: 1996OCo2002 (L M Porter & F A Mohammad); Dry Etching of SiC (S J Pearton); Design, Performance and Applications of SiC MEMS (S Zappe). Readership: Academic researchers in MEMS and industrial engineers engaged in SiC MEMS research."


Materials and Devices for Smart Systems II: Volume 888

Materials and Devices for Smart Systems II: Volume 888

Author: Yasubumi Furuya

Publisher:

Published: 2006-04-07

Total Pages: 408

ISBN-13:

DOWNLOAD EBOOK

Smart/intelligent systems is a primary technology for present and future applications in areas ranging from everyday life to aerospace missions, from civil to military environments, from robots to information technology. Smart materials are the critical foundation for high-performance smart devices, and smart devices are fundamental components for smart systems. The three cannot be separated. This book bridges the fields of smart materials, sensing and actuating devices, and intelligent systems, and provides an opportunity for researchers from all three arenas to channel information into a coherent, interdisciplinary community. Topics include: piezoelectric actuators; novel devices and systems; shape memory alloys and magnetostrictive devices; nanometer-scale processing and properties; piezoelectric materials; sensor materials and devices; and electroactive polymer actuators.