Micromechanics of Ceramic-Matrix Composites at Elevated Temperatures
Author: Longbiao Li
Publisher: Springer Nature
Published:
Total Pages: 139
ISBN-13: 9819712947
DOWNLOAD EBOOKRead and Download eBook Full
Author: Longbiao Li
Publisher: Springer Nature
Published:
Total Pages: 139
ISBN-13: 9819712947
DOWNLOAD EBOOKAuthor: Longbiao Li
Publisher: Springer Nature
Published: 2020-04-18
Total Pages: 373
ISBN-13: 9811532745
DOWNLOAD EBOOKThis book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.
Author: R.C. Bradt
Publisher: Springer Science & Business Media
Published: 2013-11-11
Total Pages: 661
ISBN-13: 1489914412
DOWNLOAD EBOOKThis proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.
Author: Narottam P. Bansal
Publisher: John Wiley & Sons
Published: 2014-10-27
Total Pages: 725
ISBN-13: 1118832892
DOWNLOAD EBOOKThis book is a comprehensive source of information on various aspects of ceramic matrix composites (CMC). It covers ceramic and carbon fibers; the fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration and joining. Each chapter in the book is written by specialists and internationally renowned researchers in the field. This book will provide state-of-the-art information on different aspects of CMCs. The book will be directed to researchers working in industry, academia, and national laboratories with interest and professional competence on CMCs. The book will also be useful to senior year and graduate students pursuing degrees in ceramic science and engineering, materials science and engineering, aeronautical, mechanical, and civil or aerospace engineering. Presents recent advances, new approaches and discusses new issues in the field, such as foreign object damage, life predictions, multiscale modeling based on probabilistic approaches, etc. Caters to the increasing interest in the application of ceramic matrix composites (CMC) materials in areas as diverse as aerospace, transport, energy, nuclear, and environment. CMCs are considered ans enabling technology for advanced aeropropulsion, space propulsion, space power, aerospace vehicles, space structures, as well as nuclear and chemical industries. Offers detailed descriptions of ceramic and carbon fibers; fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration/joining.
Author: Longbiao Li
Publisher: Springer Nature
Published: 2022-03-12
Total Pages: 170
ISBN-13: 9811902321
DOWNLOAD EBOOKThis book focuses on the matrix cracking behavior in ceramic–matrix composites (CMCs), including first matrix cracking behavior, matrix cracking evolution behavior, matrix crack opening and closure behavior considering temperature and oxidation. The micro-damage mechanisms are analyzed, and the micromechanical damage models are developed to characterize the cracking behavior. Experimental matrix cracking behavior of different CMCs at room and elevated temperatures is predicted. The book can help the material scientists and engineering designers to better understand the cracking behavior in CMCs.
Author: Karl Jakus
Publisher: Elsevier
Published: 1995-06-28
Total Pages: 569
ISBN-13: 0080523889
DOWNLOAD EBOOKHigh Temperature Mechanical Behavior of Ceramic Composites provides an up-to-date comprehensive coverage of the mechanical behavior of ceramic matrix composites at elevated temperatures. Topics include both short-term behavior (strength, fracture toughness and R-curve behavior) and long-term behavior (creep, creep-fatigue, delayed failure and lifetime). Emphasis is on a review of fundamentals and on the mechanics and mechanisms underlying properties. This is the first time that complete information of elevated temperature behavior of ceramic composites has ever been compacted together in a single volume. Of particular importance is that each chapter, written by internationally recognized experts, includes a substantial review component enabling the new material to be put in proper perspective. Shanti Nair is Associate Professor at the Department of Mechanical Engineering at the University of Massachusetts at Amherst. Karl Jakus is Professor at the University of Massachusetts at Amherst.
Author: Longbiao Li
Publisher: Woodhead Publishing
Published: 2020-02-07
Total Pages: 480
ISBN-13: 0081030223
DOWNLOAD EBOOKDurability of Ceramic-Matrix Composites presents the latest information on these high-temperature structural materials and their outstanding advantages over more conventional materials, including their high specific strength, high specific modulus, high temperature resistance and good thermal stability. The critical nature of the application of these advanced materials makes it necessary to have a complete understanding of their characterization. This book focuses explicitly on the durability of CMCs and will be extremely valuable for materials scientists and engineers who are dealing with the simulation of durability response and fatigue of ceramic matrix composites. - Provides the latest theoretical and applied research in the field of ceramic matrix composites, particularly as it relates to usage in aerospace propulsion systems - Presents extensive information on the micromechanics of damage evolution, lifetime prediction and durability in ceramic matrix composites - Details parameter studies that are valuable for materials development and lifetime durability studies
Author: Walter Krenkel
Publisher: John Wiley & Sons
Published: 2008-06-23
Total Pages: 448
ISBN-13: 9783527313617
DOWNLOAD EBOOKCovering an important material class for modern applications in the aerospace, automotive, energy production and creation sectors, this handbook and reference contains comprehensive data tables and field reports on successfully developed prototypes. The editor and authors are internationally renowned experts from NASA, EADS, DLR, Porsche, MT Aerospace, as well as universities and institutions in the USA, Europe and Japan, and they provide here a comprehensive overview of current R & D with an application-oriented emphasis.
Author:
Publisher:
Published: 1995
Total Pages: 702
ISBN-13:
DOWNLOAD EBOOKAuthor: Mrityunjay Singh
Publisher: John Wiley & Sons
Published: 2017-06-22
Total Pages: 590
ISBN-13: 1119407532
DOWNLOAD EBOOKGlobal population growth and tremendous economic development has brought us to the crossroads of long-term sustainability and risk of irreversible changes in the ecosystem. Energy efficient and ecofriendly technologies and systems are critically needed for further growth and sustainable development. While ceramic matrix composites were originally developed to overcome problems associated with the brittle nature of monolithic ceramics, today the composites can be tailored for customized purposes and offer energy efficient and ecofriendly applications, including aerospace, ground transportation, and power generation systems. The 9th International Conference on High Temperature Ceramic Matrix Composites (HTCMC 9) was held in Toronto, Canada, June 26-30, 2016 to discuss challenges and opportunities in manufacturing, commercialization, and applications for these important material systems. The Global Forum on Advanced Materials and Technologies for Sustainable Development (GFMAT 2016) was held in conjunction with HTCMC 9 to address key issues, challenges, and opportunities in a variety of advanced materials and technologies that are critically needed for sustainable societal development. This Ceramic Transactions volume contains a collection of peer reviewed papers from the 16 below symposia that were submitted from these two conferences Design and Development of Advanced Ceramic Fibers, Interfaces, and Interphases in Composites- A Symposium in Honor of Professor Roger Naslain Innovative Design, Advanced Processing, and Manufacturing Technologies Materials for Extreme Environments: Ultrahigh Temperature Ceramics (UHTCs) and Nano-laminated Ternary Carbides and Nitrides (MAX Phases) Polymer Derived Ceramics and Composites Advanced Thermal and Environmental Barrier Coatings: Processing, Properties, and Applications Thermomechanical Behavior and Performance of Composites Ceramic Integration and Additive Manufacturing Technologies Component Testing and Evaluation of Composites CMC Applications in Transportation and Industrial Systems Powder Processing Innovation and Technologies for Advanced Materials and Sustainable Development Novel, Green, and Strategic Processing and Manufacturing Technologies Ceramics for Sustainable Infrastructure: Geopolymers and Sustainable Composites Advanced Materials, Technologies, and Devices for Electro-optical and Medical Applications Porous Ceramics for Advanced Applications Through Innovative Processing Multifunctional Coatings for Sustainable Energy and Environmental Applications