Advances in Virus Research serial highlights new advances in the field with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in Advances in Virus Research serials - Updated release includes the latest information on Microbes at bio/nano interfaces
This book discusses the unique interactions of nanoparticles with various biomolecules under different environmental conditions. It describes the consequences of these interactions on other biological aspects like flora and fauna of the niche, cell proliferation, etc. The book provides information about the novel and eco-friendly nanoparticle synthesis methods, such as continuous synthesis of nanoparticles using microbial cells. Additionally, the book discusses nanoparticles' potential impact in different areas of biological sciences like food, medicine, agriculture, and the environment. Due to their advanced physicochemical properties, nanoparticles have revolutionized biomedical and pharmaceutical sciences. Inside the biological milieu, nanoparticles interact with different moieties to adopt stable shape, size, and surface functionalities and form nano-biomolecular complexes. The interaction pattern at the interface form complexes determines the fate of interacting biomolecules and nanoparticles inside the biological system. Understanding the interaction pattern at the nano-bio interface is crucial for the safe use of nanoparticles in natural sciences. This book rightly addresses all questions about the interaction and the ensuing structure and function of these nano-biomolecular complexes. This book caters to students and researchers in the area of biotechnology, microbiology, and pharmaceutical sciences.
MICROBIAL INTERACTIONS AT NANOBIOTECHNOLOGY INTERFACES This book covers a wide range of topics including synthesis of nanomaterials with specific size, shape, and properties, structure-function relationships, tailoring the surface of nanomaterials for improving the properties, interaction of nanomaterials with proteins/microorganism/eukaryotic cells, and applications in different sectors. This book also provides a strong foundation for researchers who are interested to venture into developing functionalized nanomaterials for any biological applications in their research. Practical concepts such as modelling nanomaterials, and simulating the molecular interactions with biomolecules, transcriptomic or genomic approaches, advanced imaging techniques to investigate the functionalization of nanomaterials/interaction of nanomaterials with biomolecules and microorganisms are some of the chapters that offer significant benefits to the researchers.
Nanomaterials are becoming ubiquitous; microbes similarly are everywhere. This book focuses on various ways the diverse nanomaterials interact with microbial communities and implications of such interactions. Both toxicity and beneficial effects of nanomaterial-microbe interactions have been covered. This includes areas such as fate and bioavailability of nanomaterials in environments, microbial synthesis of nanomaterials and antimicrobial action of nanomaterials. Fairly comprehensive but with narrow focus, the book provides useful insights into these interactions which need to be factored in while designing nanoscience based new technologies.
Nanotechnology: An Introduction, Second Edition, is ideal for the newcomer to nanotechnology, someone who also brings a strong background in one of the traditional disciplines, such as physics, mechanical or electrical engineering, or chemistry or biology, or someone who has experience working in microelectromechanical systems (MEMS) technology. This book brings together the principles, theory, and practice of nanotechnology, giving a broad, yet authoritative, introduction to the possibilities and limitations of this exciting and rapidly developing field. The book's author, Prof Ramsden, also discusses design, manufacture, and applications and their impact on a wide range of nanotechnology areas. - Provides an overview of the rapidly growing and developing field of nanotechnology - Focuses on key essentials, and structured around a robust anatomy of the subject - Brings together the principles, theory, and practice of nanotechnology, giving a broad, yet authoritative, introduction to the possibilities and limitations of this exciting and rapidly developing field
Nowadays, the field of microbiology is undergoing a revolutionary change due to the emergence of Artificial Intelligence (AI). AI is being used to analyze massive data in a predictable form, about the behavior of microorganisms, to solve microbial classification-related problems, exploring the interaction between microorganisms and the surrounding environment. It also helps to extract novel microbial metabolites which have been used in various fields like medical, food and agricultural industries. As the pace of innovation in Microbiology is accelerating, the use of AI in these industries will be beneficial. AI will not only show its extraordinary potential in expanding the market of antibiotics, food, and agriculture but also offer an eco-friendly, safer, and profitable solution to the respective industries. It would be challenging to search out specific features and discuss future research on AI in microbiology with a wide perspective. - Uncovering extended functions of AI in Microbiology. - Production and development of novel drug targets through AI. - Challenges for using and selecting appropriate AI tools in health, agriculture and food sector
Nanocomposites for Environmental, Energy and Agricultural Applications presents a comprehensive overview of recent developments and prospects for nanocomposites in sustainable/green energy production, water/wastewater treatment as well as crop production. Each chapter introduces the fundamental principles as well as the design and characterization of nanocomposites for various applications. This includes detailed discussions of nanocomposites technology, including mixed matrix membranes for water and gas separation, nanohybrid catalysts for organic pollutants degradation and sustainable energy production as well as advanced nanocomposites of different structural dimensions (0D, 1D, 2D and 3D) for agricultural utilization. The book also discusses the challenges of lab-based research towards industrial implementation and related case studies based on pilot and full-scale processes. At the end of each chapter, future opportunities for improvement will be provided to offer researchers a new research direction. The book will be a practical guide for researchers and scientists working in the fields of nanotechnology and nanomaterials science and technology. - Provides recent research progress on nanocomposites for environmental, energy, and agricultural applications - Includes related case studies based on pilot-scale and full-scale processes - Emphasizes the application of nanocomposites for water/wastewater treatment, sustainable energy production, and agricultural processes
Bionanotechnology Towards Green Energy explains the role of bionanotechnology in the next generation technologies of green energy from an interdisciplinary and sustainability perspective. Chapters cover different roles of bionanotechnology such as applications of bio-nano enabled materials/coatings, scaling-up of green energy production, design and synthesis of bio-inspired nanomaterials and their applications, bio-nanofluid-based photovoltaic thermal systems, the use of bio-templated and biomimetic materials, and so forth. It focuses on waste-to-energy conversion and fixing intricate environmental issues. Key features: Provides detailed coverage of green energy production through bionanotechnological intervention Reviews future research needs in bionanotechnology in the green energy sector and scientific challenges in the mitigation of energy crises Deals with cutting-edge research on microbial synergism in biohydrogen production and storage Discusses the fabrication of bio-nano/hybrid electrode materials for supercapacitors and energy storage devices Includes extensive illustrations, case studies, summary tables, and up-to-date references This book is aimed at researchers and professionals in bionanotechnology, energy sciences, and environmental engineering.
An introduction to the fundamental concepts and rules in bioelectrochemistry and explores latest advancements in the field Bioelectrochemical Interface Engineering offers a guide to this burgeoning interdisciplinary field. The authors—noted experts on the topic—present a detailed explanation of the field’s basic concepts, provide a fundamental understanding of the principle of electrocatalysis, electrochemical activity of the electroactive microorganisms, and mechanisms of electron transfer at electrode-electrolyte interfaces. They also explore the design and development of bioelectrochemical systems. The authors review recent advances in the field including: the development of new bioelectrochemical configurations, new electrode materials, electrode functionalization strategies, and extremophilic electroactive microorganisms. These current developments hold the promise of powering the systems in remote locations such as deep sea and extra-terrestrial space as well as powering implantable energy devices and controlled drug delivery. This important book: • Explores the fundamental concepts and rules in bioelectrochemistry and details the latest advancements • Presents principles of electrocatalysis, electroactive microorganisms, types and mechanisms of electron transfer at electrode-electrolyte interfaces, electron transfer kinetics in bioelectrocatalysis, and more • Covers microbial electrochemical systems and discusses bioelectrosynthesis and biosensors, and bioelectrochemical wastewater treatment • Reviews microbial biosensor, microfluidic and lab-on-chip devices, flexible electronics, and paper and stretchable electrodes Written for researchers, technicians, and students in chemistry, biology, energy and environmental science, Bioelectrochemical Interface Engineering provides a strong foundation to this advanced field by presenting the core concepts, basic principles, and newest advances.