This book has brought together leading investigators who work in the new arena of brain connectomics. This includes ‘macro-connectome’ efforts to comprehensively chart long-distance pathways and functional networks; ‘micro-connectome’ efforts to identify every neuron, axon, dendrite, synapse, and glial process within restricted brain regions; and ‘meso-connectome’ efforts to systematically map both local and long-distance connections using anatomical tracers. This book highlights cutting-edge methods that can accelerate progress in elucidating static ‘hard-wired’ circuits of the brain as well as dynamic interactions that are vital for brain function. The power of connectomic approaches in characterizing abnormal circuits in the many brain disorders that afflict humankind is considered. Experts in computational neuroscience and network theory provide perspectives needed for synthesizing across different scales in space and time. Altogether, this book provides an integrated view of the challenges and opportunities in deciphering brain circuits in health and disease.
This book has brought together leading investigators who work in the new arena of brain connectomics. This includes ‘macro-connectome’ efforts to comprehensively chart long-distance pathways and functional networks; ‘micro-connectome’ efforts to identify every neuron, axon, dendrite, synapse, and glial process within restricted brain regions; and ‘meso-connectome’ efforts to systematically map both local and long-distance connections using anatomical tracers. This book highlights cutting-edge methods that can accelerate progress in elucidating static ‘hard-wired’ circuits of the brain as well as dynamic interactions that are vital for brain function. The power of connectomic approaches in characterizing abnormal circuits in the many brain disorders that afflict humankind is considered. Experts in computational neuroscience and network theory provide perspectives needed for synthesizing across different scales in space and time. Altogether, this book provides an integrated view of the challenges and opportunities in deciphering brain circuits in health and disease.
Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. - Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology - Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems - Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience - Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain
Author: and Director NIBS Neuroscience Program University of Southern California Larry W. Swanson Milo Don and Lucille Appleman Professor of Biological Sciences
Depending on your point of view the brain is an organ, a machine, a biological computer, or simply the most important component of the nervous system. How does it work as a whole? What are its major parts and how are they interconnected to generate thinking, feelings, and behavior? This book surveys 2,500 years of scientific thinking about these profoundly important questions from the perspective of fundamental architectural principles, and then proposes a new model for the basic plan of neural systems organization based on an explosion of structural data emerging from the neuroanatomy revolution of the 1970's. The importance of a balance between theoretical and experimental morphology is stressed throughout the book. Great advances in understanding the brain's basic plan have come especially from two traditional lines of biological thought-- evolution and embryology, because each begins with the simple and progresses to the more complex. Understanding the organization of brain circuits, which contain thousands of links or pathways, is much more difficult. It is argued here that a four-system network model can explain the structure-function organization of the brain. Possible relationships between neural networks and gene networks revealed by the human genome project are explored in the final chapter. The book is written in clear and sparkling prose, and it is profusely illustrated. It is designed to be read by anyone with an interest in the basic organization of the brain, from neuroscience to philosophy to computer science to molecular biology. It is suitable for use in neuroscience core courses because it presents basic principles of the structure of the nervous system in a systematic way.
Over the last twenty years there has been an explosive growth in our understanding of the molecular, cellular, and anatomical changes that occur in the days and weeks following brain injury. It is now clear that training and exposure to certain environments can modify and shape neuronal plasticity in lower animals and humans. In humans, in particular, there are new ways of charting neuronal plasticity at the ensemble or regional level using functional neuroimaging techniques such as positron emission tomography and functional magnetic resonance imaging. Thus, the time seems right for transporting the laboratory results to the clinic so that experimental findings can be tested in the "field". This volume provides some impetus to moving the field of cognitive neuroscience a little further in its efforts to improve the lives of patients who have suffered a debilitating brain injury.
This open access book summarizes the multi-disciplinary results of one of China’s main primatological research projects on the endemic Tibetan macaque (Macaca thibetana), which had continued for over 30 years, but which had never been reported on systematically. Dedicated to this exceptional Old World monkey, this book makes the work of Chinese primatologists on the social behavior, cooperation, culture, cognition, group dynamics, and emerging technologies in primate research accessible to the international scientific community. One of the most impressive Asian monkeys, and the largest member of its genus, the Tibetan macaque deserves to be better known. This volume goes a long way towards bringing this species into the spotlight with many excellent behavioral analyses from the field. - Frans de Waal, Professor of Psychology, Emory University, USA. Macaques matter. To understand primate patterns and trends, and to gain important insight into humanity, we need to augment and expand our engagement with the most successful and widespread primate genus aside from Homo. This volume focuses on the Tibetan macaque, a fascinating species with much to tell us about social behavior, physiology, complexity and the macaque knack for interfacing with humans. This book is doubly important for primatology in that beyond containing core information on this macaque species, it also reflects an effective integrated collaboration between Chinese scholars and a range of international colleagues—exactly the type of collaborative engagement primatology needs. This volume is a critical contribution to a global primatology. - Agustín Fuentes, Professor of Anthropology, University of Notre Dame, USA. I have many fond memories of my association with Mt. Huangshan research beginning in 1983, when together with Professor Qishan Wang we established this site. It is such a beautiful place and I miss it. It is gratifying to see how far research has progressed since we began work there, becoming more internationalized and very much a collaborative endeavor under the long-term direction of Professor Jin-Hua Li and colleagues. This book highlights the increased interest in this species, representing a variety of disciplines ranging from macro aspects of behavior, cognition and sociality, to micro aspects of microbes, parasites and disease, authored by a group of renowned Chinese and international primatologists. I applaud their efforts and expect more interesting work to come from this site in the years ahead. - Kazuo Wada, Professor Emeritus, Kyoto University, Japan.
This is the first complete defined vocabulary for all parts of the human nervous system that can be seen with functional imaging methods. One main part is a lexicon of standard and nonstandard terms, and another main part is a set of hierarchical nomenclature tables of standard terms.
Originally published in German and French, the work is considered to be unsurpassed in both its scientific eloquence and accurate photographic documentation. Revising Brodmann's cortical parcellation system, von Economo took cytoarchitectonics to a new zenith.>The revised edition contains newly compiled tables with extensive quantitative data on the 107 cytoarchitectonic areas of Economo and Koskinas, plus all the 'transition' areas and full reproductions of the original microphotographs. It also contains the concluding chapter that appeared only in the 1929 English edition, with Economo's later views on cytoarchitectonic neuropathology and evolutionary neuroscience, enriched with material and figures from his later studies. Last but not least a newly discovered manuscript by Georg N. Koskinas, appears in English for the first time. In it, Economo's collaborator presents an insightful analysis of the 'General Part' of their larger textbook of cytoarchitectonics.
A pioneer in the field outlines new empirical and computational approaches to mapping the neural connections of the human brain. Crucial to understanding how the brain works is connectivity, and the centerpiece of brain connectivity is the connectome, a comprehensive description of how neurons and brain regions are connected. In this book, Olaf Sporns surveys current efforts to chart these connections—to map the human connectome. He argues that the nascent field of connectomics has already begun to influence the way many neuroscientists collect, analyze, and think about their data. Moreover, the idea of mapping the connections of the human brain in their entirety has captured the imaginations of researchers across several disciplines including human cognition, brain and mental disorders, and complex systems and networks. Discovering the Human Connectome offers the first comprehensive overview of current empirical and computational approaches in this rapidly developing field.
This book provides an essential overview of the broad range of functional brain imaging techniques, as well as neuroscientific methods suitable for various scientific tasks in fundamental and clinical neuroscience. It also shares information on novel methods in computational neuroscience, mathematical algorithms, image processing, and applications to neuroscience. The mammalian brain is a huge and complex network that consists of billions of neural and glial cells. Decoding how information is represented and processed by this neural network requires the ability to monitor the dynamics of large numbers of neurons at high temporal and spatial resolution over a large part of the brain. Functional brain optical imaging has seen more than thirty years of intensive development. Current light-using methods provide good sensitivity to functional changes through intrinsic contrast and are rapidly exploiting the growing availability of exogenous fluorescence probes. In addition, various types of functional brain optical imaging are now being used to reveal the brain’s microanatomy and physiology.