Advanced Magnetic Materials

Advanced Magnetic Materials

Author: Leszek Malkinski

Publisher: BoD – Books on Demand

Published: 2012-05-24

Total Pages: 246

ISBN-13: 9535106376

DOWNLOAD EBOOK

This book reports on recent progress in emerging technologies, modern characterization methods, theory and applications of advanced magnetic materials. It covers broad spectrum of topics: technology and characterization of rapidly quenched nanowires for information technology; fabrication and properties of hexagonal ferrite films for microwave communication; surface reconstruction of magnetite for spintronics; synthesis of multiferroic composites for novel biomedical applications, optimization of electroplated inductors for microelectronic devices; theory of magnetism of Fe-Al alloys; and two advanced analytical approaches for modeling of magnetic materials using Everett integral and the inverse problem approach. This book is addressed to a diverse group of readers with general background in physics or materials science, but it can also benefit specialists in the field of magnetic materials.


Transformers and Inductors for Power Electronics

Transformers and Inductors for Power Electronics

Author: W.G. Hurley

Publisher: John Wiley & Sons

Published: 2013-02-21

Total Pages: 374

ISBN-13: 1118544676

DOWNLOAD EBOOK

Based on the fundamentals of electromagnetics, this clear and concise text explains basic and applied principles of transformer and inductor design for power electronic applications. It details both the theory and practice of inductors and transformers employed to filter currents, store electromagnetic energy, provide physical isolation between circuits, and perform stepping up and down of DC and AC voltages. The authors present a broad range of applications from modern power conversion systems. They provide rigorous design guidelines based on a robust methodology for inductor and transformer design. They offer real design examples, informed by proven and working field examples. Key features include: emphasis on high frequency design, including optimisation of the winding layout and treatment of non-sinusoidal waveforms a chapter on planar magnetic with analytical models and descriptions of the processing technologies analysis of the role of variable inductors, and their applications for power factor correction and solar power unique coverage on the measurements of inductance and transformer capacitance, as well as tests for core losses at high frequency worked examples in MATLAB, end-of-chapter problems, and an accompanying website containing solutions, a full set of instructors’ presentations, and copies of all the figures. Covering the basics of the magnetic components of power electronic converters, this book is a comprehensive reference for students and professional engineers dealing with specialised inductor and transformer design. It is especially useful for senior undergraduate and graduate students in electrical engineering and electrical energy systems, and engineers working with power supplies and energy conversion systems who want to update their knowledge on a field that has progressed considerably in recent years.


High-Frequency Magnetic Components

High-Frequency Magnetic Components

Author: Marian K. Kazimierczuk

Publisher: John Wiley & Sons

Published: 2011-08-24

Total Pages: 510

ISBN-13: 1119964911

DOWNLOAD EBOOK

If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.


Integrated Multiferroic Heterostructures and Applications

Integrated Multiferroic Heterostructures and Applications

Author: Ming Liu

Publisher: John Wiley & Sons

Published: 2019-03-21

Total Pages: 262

ISBN-13: 3527803629

DOWNLOAD EBOOK

Written by well-known experts in the field, this first systematic overview of multiferroic heterostructures summarizes the latest developments, first presenting the fundamental mechanisms, including multiferroic materials synthesis, structures and mechanisms, before going on to look at device applications. The resulting text offers insight and understanding for scientists and students new to this area.


Voltage Regulators for Next Generation Microprocessors

Voltage Regulators for Next Generation Microprocessors

Author: Toni López

Publisher: Springer Science & Business Media

Published: 2010-12-01

Total Pages: 421

ISBN-13: 1441975608

DOWNLOAD EBOOK

This book deals with energy delivery challenges of the power processing unit of modern computer microprocessors. It describes in detail the consequences of current trends in miniaturization and clock frequency increase, upon the power delivery unit, referred to as voltage regulator. This is an invaluable reference for anybody needing to understand the key performance limitations and opportunities for improvement, from both a circuit and systems perspective, of state-of-the-art power solutions for next generation CPUs.