Micro- and Nanoscale Phenomena in Tribology

Micro- and Nanoscale Phenomena in Tribology

Author: Yip-Wah Chung

Publisher: CRC Press

Published: 2011-10-19

Total Pages: 222

ISBN-13: 1439839220

DOWNLOAD EBOOK

Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study. After discussing the evolution of tribology in the micro and nano world, the book describes contact conditions spanning between macroscale and nanoscale contacts. It presents an overview of fundamental continuum treatments of interfacial contact and lubrication under a wide range of conditions, including novel advances in contact simulation. It also gives a thorough account of the nature of surface energies and forces in nanostructures as well as adhesion in dry and wet environments. The book then explains how to perform friction measurements at the nanoscale and interpret friction data before demonstrating how micro- and nanotextured surfaces affect adhesion, friction, and wetting. The final chapters emphasize the importance of surface chemistry and molecular dynamics simulation in tribology. With numerous examples and figures throughout, this volume presents a thorough account of important advancements in tribology that offer insight into micro- and nanoscale phenomena. By enabling a better understanding of fundamental micro- and nanoscale interactions, the book helps readers effectively design and fabricate durable tribological components for various engineering and biological systems.


Micro- and Nanoscale Phenomena in Tribology

Micro- and Nanoscale Phenomena in Tribology

Author: Yip-Wah Chung

Publisher: CRC Press

Published: 2017-03-29

Total Pages: 0

ISBN-13: 9781138072350

DOWNLOAD EBOOK

With numerous examples and figures throughout, this volume presents a thorough account of important advancements in tribology that offer insight into micro- and nanoscale phenomena. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study. By enabling a better understanding of fundamental micro- and nanoscale interactions, the book helps readers effectively design and fabricate durable tribological components for various engineering and biological systems.


Tribology on the Small Scale

Tribology on the Small Scale

Author: C. Mathew Mate

Publisher: Oxford Graduate Texts

Published: 2019

Total Pages: 448

ISBN-13: 0199609802

DOWNLOAD EBOOK

Friction, lubrication, adhesion, and wear are prevalent physical phenomena in everyday life and in many key technologies. This book explains how these tribological phenomena originate from atomistic and microscale physical phenomena and shows how this understanding can be used to solve macroscale tribology problems.


Handbook of Micro/Nano Tribology

Handbook of Micro/Nano Tribology

Author: Bharat Bhushan

Publisher: CRC Press

Published: 2020-10-28

Total Pages: 884

ISBN-13: 9781420050493

DOWNLOAD EBOOK

This second edition of Handbook of Micro/Nanotribology addresses the rapid evolution within this field, serving as a reference for the novice and the expert alike. Two parts divide this handbook: Part I covers basic studies, and Part II addresses design, construction, and applications to magnetic storage devices and MEMS. Discussions include: surface physics and methods for physically and chemically characterizing solid surfaces roughness characterization and static contact models using fractal analysis sliding at the interface and friction on an atomic scale scratching and wear as a result of sliding nanofabrication/nanomachining as well as nano/picoindentation lubricants for minimizing friction and wear surface forces and microrheology of thin liquid films measurement of nanomechanical properties of surfaces and thin films atomic-scale simulations of interfacial phenomena micro/nanotribology and micro/nanomechanics of magnetic storage devices This comprehensive book contains 16 chapters contributed by more than 20 international researchers. In each chapter, the presentation starts with macroconcepts and then lead to microconcepts. With more than 500 illustrations and 50 tables, Handbook of Micro/Nanotribology covers the range of relevant topics, including characterization of solid surfaces, measurement techniques and applications, and theoretical modeling of interfaces. What's New in the Second Edition? New chapters on: AFM instrumentation Surface forces and adhesion Design and construction of magnetic storage devices Microdynamical devices and systems Mechanical properties of materials in microstructure Micro/nanotribology and micro/nanomechanics of MEMS devices


Nanomechanics for Coatings and Engineering Surfaces

Nanomechanics for Coatings and Engineering Surfaces

Author: Ben Beake

Publisher: Elsevier

Published: 2024-11-05

Total Pages: 738

ISBN-13: 0443133352

DOWNLOAD EBOOK

Nanomechanics for Coatings and Engineering Surfaces: Test Methods, Development Strategies, Modeling Approaches, and Applications provides readers with an array of best practices for nanoindentation measurements as well as related small-scale test methods and how to translate test results into the development of improved coatings. A core theme of the book is explaining to readers exactly how, when, and why the nanomechanical properties of engineered surfaces relate to their wear resistance. The book starts with chapters that introduce the development and importance of nanomechanical testing and linkages between wear resistance and the mechanical properties of coatings before moving into discussions of various experimental methods and techniques, such as nanoindentation, continuous stiffness measurements, nano-scratch methods, high-temperature testing, nano-impact testing, and more. Other sections discuss modeling approaches such as finite element analysis, atomistic and molecular dynamics, and analytical methods. Design strategies and industrial applications are covered next, with a final section looking at trends and future directions. - Provides best practices in nanoindentation measurements and related small-scale test methods - Demonstrates how to use test results to develop improved coatings - Outlines modeling approaches and numerical simulations - Highlights selected applications for metallic nanocomposites, tribological coatings, solid lubricants, and aerospace coatings - Shows future directions for simulation of complex wear scenarios


Principles and Applications of Tribology

Principles and Applications of Tribology

Author: Bharat Bhushan

Publisher: John Wiley & Sons

Published: 2013-02-15

Total Pages: 944

ISBN-13: 1118403010

DOWNLOAD EBOOK

This fully updated Second Edition provides the reader with the solid understanding of tribology which is essential to engineers involved in the design of, and ensuring the reliability of, machine parts and systems. It moves from basic theory to practice, examining tribology from the integrated viewpoint of mechanical engineering, mechanics, and materials science. It offers detailed coverage of the mechanisms of material wear, friction, and all of the major lubrication techniques - liquids, solids, and gases - and examines a wide range of both traditional and state-of-the-art applications. For this edition, the author has included updates on friction, wear and lubrication, as well as completely revised material including the latest breakthroughs in tribology at the nano- and micro- level and a revised introduction to nanotechnology. Also included is a new chapter on the emerging field of green tribology and biomimetics.


Teaching-Learning Contemporary Physics

Teaching-Learning Contemporary Physics

Author: Beata Jarosievitz

Publisher: Springer Nature

Published: 2021-09-15

Total Pages: 279

ISBN-13: 3030787206

DOWNLOAD EBOOK

This book presents research contributions focussing on the introduction of contemporary physics topics – mainly, but not exclusively, quantum physics – into high school currciula. Despite the important advances and discoveries in quantum physics and relativity which have revolutionized our views of nature and our everyday lives, the presence of these topics in high school physics education is still lacking. In this book physics education researchers report on the teaching and learning of quantum physics from different perspectives and discuss the design and use of different pedagogical approaches and educational pathways. There is still much debate as to what content is appropriate at high school level as well what pedagogical approaches and strategies should be adopted to support student learning. Currently there is a greater focus on how to teach modern physics at the high school level rather than classical physics. However, teachers still lack experience and availability of appropriate teaching and learning materials to support the coherent integration of Quantum Physics in high school curricula. All of the 19 papers presented in this book discuss innovative approaches for enhancing physics education in schools.


Nanotribology and Nanomechanics

Nanotribology and Nanomechanics

Author: Bharat Bhushan

Publisher: Springer Science & Business Media

Published: 2006-01-27

Total Pages: 1157

ISBN-13: 3540282483

DOWNLOAD EBOOK

The recent emergence and proliferation of proximal probes, e.g. SPM and AFM, and computational techniques for simulating tip-surface interactions has enabled the systematic investigation of interfacial problems on ever smaller scales, as well as created means for modifying and manipulating nanostructures. In short, they have led to the appearance of the new, interdisciplinary fields of micro/nanotribology and micro/nanomechanics. This volume serves as a timely, practical introduction to the principles of nanotribology and nanomechanics and applications to magnetic storage systems and MEMS/NEMS. Assuming some familiarity with macrotribology/mechanics, the book comprises chapters by internationally recognized experts, who integrate knowledge of the field from the mechanics and materials-science perspectives. They cover key measurement techniques, their applications, and theoretical modelling of interfaces, each beginning their contributions with macro- and progressing to microconcepts. After reviewing the fundamental experimental and theoretical aspects in the first part, Nanotribology and Nanomechanics then treats applications. Three groups of readers are likely to find this text valuable: graduate students, research workers, and practicing engineers. It can serve as the basis for a comprehensive, one- or two-semester course in scanning probe microscopy; applied scanning probe techniques; or nanotribology/nanomechanics/nanotechnology, in departments such as mechanical engineering, materials science, and applied physics. With a Foreword by Physics Nobel Laureate Gerd Binnig Dr. Bharat Bhushan is an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the Department of Mechanical Engineering, Graduate Research Faculty Advisor in the Department of Materials Science and Engineering, and the Director of the Nanotribology Laboratory for Information Storage & MEMS/NEMS (NLIM) at the Ohio State University, Columbus, Ohio. He is an internationally recognized expert of tribology and mechanics on the macro- to nanoscales, and is one of the most prolific authors. He is considered by some a pioneer of the tribology and mechanics of magnetic storage devices and a leading researcher in the fields of nanotribology and nanomechanics using scanning probe microscopy and applications to micro/nanotechnology. He is the recipient of various international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, and the Fulbright Senior Scholar Award.


Electrical Contacts

Electrical Contacts

Author: Paul G. Slade

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 1311

ISBN-13: 1439881316

DOWNLOAD EBOOK

Covering the theory, application, and testing of contact materials, Electrical Contacts: Principles and Applications, Second Edition introduces a thorough discussion on making electric contact and contact interface conduction; presents a general outline of, and measurement techniques for, important corrosion mechanisms; considers the results of contact wear when plug-in connections are made and broken; investigates the effect of thin noble metal plating on electronic connections; and relates crucial considerations for making high- and low-power contact joints. It examines contact use in switching devices, including the interruption of AC and DC circuits with currents in the range 10mA to 100kA and circuits up to 1000V, and describes arc formation between open contacts and between opening contacts. Arcing effects on contacts such as erosion, welding, and contamination are also addressed. Containing nearly 3,000 references, tables, equations, figures, drawings, and photographs, the book provides practical examples encompassing everything from electronic circuits to high power circuits, or microamperes to mega amperes. The new edition: Reflects the latest advances in electrical contact science and technology Examines current research on contact corrosion, materials, and switching Includes updates and revisions in each chapter, as well as up-to-date references and new figures and examples throughout Delivers three new chapters on the effects of dust contamination, electronic sensing for switching systems, and contact phenomena for micro-electronic systems (MEMS) applications With contributions from recognized experts in the field, Electrical Contacts: Principles and Applications, Second Edition assists practicing scientists and engineers in the prevention of costly system failures, as well as offers a comprehensive introduction to the subject for technology graduate students, by expanding their knowledge of electrical contact phenomena.


Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales

Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales

Author: Bharat Bhushan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 961

ISBN-13: 9401007365

DOWNLOAD EBOOK

The word tribology was fIrst reported in a landmark report by P. Jost in 1966 (Lubrication (Tribology)--A Report on the Present Position and Industry's Needs, Department of Education and Science, HMSO, London). Tribology is the science and technology of two interacting surfaces in relative motion and of related subjects and practices. The popular equivalent is friction, wear and lubrication. The economic impact of the better understanding of tribology of two interacting surfaces in relative motion is known to be immense. Losses resulting from ignorance of tribology amount in the United States alone to about 6 percent of its GNP or about $200 billion dollars per year (1966), and approximately one-third of the world's energy resources in present' use, appear as friction in one form or another. A fundamental understanding of the tribology of the head-medium interface in magnetic recording is crucial to the future growth of the $100 billion per year information storage industry. In the emerging microelectromechanical systems (MEMS) industry, tribology is also recognized as a limiting technology. The advent of new scanning probe microscopy (SPM) techniques (starting with the invention of the scanning tunneling microscope in 1981) to measure surface topography, adhesion, friction, wear, lubricant-fIlm thickness, mechanical properties all on a micro to nanometer scale, and to image lubricant molecules and the availability of supercomputers to conduct atomic-scale simulations has led to the development of a new fIeld referred to as Microtribology, Nanotribology, or Molecular Tribology (see B. Bhushan, J. N. Israelachvili and U.