Methods of Contour Integration

Methods of Contour Integration

Author: M. L. Rasulov

Publisher: Elsevier

Published: 2014-12-03

Total Pages: 455

ISBN-13: 1483275000

DOWNLOAD EBOOK

Methods of Contour Integration contains two parts: (1) a systematic exposition of the computational method for solving boundary and mixed problems, and (2) the contour-integral method for investigating general linear mixed problems. The first part includes formulae for expanding arbitrary vector-valued functions in series from integral residues of solutions of boundary-value problems for systems of ordinary differential equations with discontinuous coefficients. These formulae give residue representations of solutions of the corresponding one-dimensional mixed problems for equations with discontinuous coefficients. The book also explains a computational method of separating the variables which is a generalization of the ordinary method of separating variables to the case of nonself-adjoint operators. In part two, the text discusses one-dimensional mixed problems for equations with discontinuous coefficients. Under regular boundary conditions, it proves the existence of solutions for these problems and the representability of the solutions in the form of contour integrals with a complex parameter. The text points out that the contour-integral method is also applicable to parabolic equations and to equations in which the coefficients are functions of time. The book is ideal for mathematicians, students, and professor of calculus and advanced mathematics.


Inside Interesting Integrals

Inside Interesting Integrals

Author: Paul J. Nahin

Publisher: Springer Nature

Published: 2020-06-27

Total Pages: 542

ISBN-13: 3030437884

DOWNLOAD EBOOK

What’s the point of calculating definite integrals since you can’t possibly do them all? What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future. This book, now in its second edition, is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion.


Introduction to Complex Analysis

Introduction to Complex Analysis

Author: Junjiro Noguchi

Publisher: American Mathematical Soc.

Published: 2008-04-09

Total Pages: 268

ISBN-13: 9780821889602

DOWNLOAD EBOOK

This book describes a classical introductory part of complex analysis for university students in the sciences and engineering and could serve as a text or reference book. It places emphasis on rigorous proofs, presenting the subject as a fundamental mathematical theory. The volume begins with a problem dealing with curves related to Cauchy's integral theorem. To deal with it rigorously, the author gives detailed descriptions of the homotopy of plane curves. Since the residue theorem is important in both pure and applied mathematics, the author gives a fairly detailed explanation of how to apply it to numerical calculations; this should be sufficient for those who are studying complex analysis as a tool.


Mathematical Methods

Mathematical Methods

Author: Sadri Hassani

Publisher: Springer Science & Business Media

Published: 2000-06-15

Total Pages: 680

ISBN-13: 9780387989587

DOWNLOAD EBOOK

Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.


Mathematical Aspects of Boundary Element Methods

Mathematical Aspects of Boundary Element Methods

Author: Marc Bonnet

Publisher: CRC Press

Published: 2024-07-05

Total Pages: 308

ISBN-13: 1000657426

DOWNLOAD EBOOK

Boundary element methods relate to a wide range of engineering applications, including fluid flow, fracture analysis, geomechanics, elasticity, and heat transfer. Thus, new results in the field hold great importance not only to researchers in mathematics, but to applied mathematicians, physicists, and engineers. A two-day minisymposium Mathematical Aspects of Boundary Element Methods at the IABEM conference in May 1998 brought together top rate researchers from around the world, including Vladimir Maz’ya, to whom the conference was dedicated. Focusing on the mathematical and numerical analysis of boundary integral operators, this volume presents 25 papers contributed to the symposium. Mathematical Aspects of Boundary Element Methods provides up-to-date research results from the point of view of both mathematics and engineering. The authors detail new results, such as on nonsmooth boundaries, and new methods, including domain decomposition and parallelization, preconditioned iterative techniques, multipole expansions, higher order boundary elements, and approximate approximations. Together they illustrate the connections between the modeling of applied problems, the derivation and analysis of corresponding boundary integral equations, and their efficient numerical solutions.


Handbook of Computational Methods for Integration

Handbook of Computational Methods for Integration

Author: Prem K. Kythe

Publisher: CRC Press

Published: 2004-12-20

Total Pages: 621

ISBN-13: 0203490304

DOWNLOAD EBOOK

During the past 20 years, there has been enormous productivity in theoretical as well as computational integration. Some attempts have been made to find an optimal or best numerical method and related computer code to put to rest the problem of numerical integration, but the research is continuously ongoing, as this problem is still very much open-


Modern Mathematical Methods For Scientists And Engineers: A Street-smart Introduction

Modern Mathematical Methods For Scientists And Engineers: A Street-smart Introduction

Author: Athanassios Fokas

Publisher: World Scientific

Published: 2022-12-12

Total Pages: 568

ISBN-13: 180061182X

DOWNLOAD EBOOK

Modern Mathematical Methods for Scientists and Engineers is a modern introduction to basic topics in mathematics at the undergraduate level, with emphasis on explanations and applications to real-life problems. There is also an 'Application' section at the end of each chapter, with topics drawn from a variety of areas, including neural networks, fluid dynamics, and the behavior of 'put' and 'call' options in financial markets. The book presents several modern important and computationally efficient topics, including feedforward neural networks, wavelets, generalized functions, stochastic optimization methods, and numerical methods.A unique and novel feature of the book is the introduction of a recently developed method for solving partial differential equations (PDEs), called the unified transform. PDEs are the mathematical cornerstone for describing an astonishingly wide range of phenomena, from quantum mechanics to ocean waves, to the diffusion of heat in matter and the behavior of financial markets. Despite the efforts of many famous mathematicians, physicists and engineers, the solution of partial differential equations remains a challenge.The unified transform greatly facilitates this task. For example, two and a half centuries after Jean d'Alembert formulated the wave equation and presented a solution for solving a simple problem for this equation, the unified transform derives in a simple manner a generalization of the d'Alembert solution, valid for general boundary value problems. Moreover, two centuries after Joseph Fourier introduced the classical tool of the Fourier series for solving the heat equation, the unified transform constructs a new solution to this ubiquitous PDE, with important analytical and numerical advantages in comparison to the classical solutions. The authors present the unified transform pedagogically, building all the necessary background, including functions of real and of complex variables and the Fourier transform, illustrating the method with numerous examples.Broad in scope, but pedagogical in style and content, the book is an introduction to powerful mathematical concepts and modern tools for students in science and engineering.


A Course in Mathematical Methods for Physicists

A Course in Mathematical Methods for Physicists

Author: Russell L. Herman

Publisher: CRC Press

Published: 2013-12-04

Total Pages: 776

ISBN-13: 1000687260

DOWNLOAD EBOOK

Based on the author's junior-level undergraduate course, this introductory textbook is designed for a course in mathematical physics. Focusing on the physics of oscillations and waves, A Course in Mathematical Methods for Physicists helps students understand the mathematical techniques needed for their future studies in physics. It takes a bottom-u


Mathematical Methods in Engineering and Physics

Mathematical Methods in Engineering and Physics

Author: Gary N. Felder

Publisher: John Wiley & Sons

Published: 2015-04-13

Total Pages: 829

ISBN-13: 1118449606

DOWNLOAD EBOOK

This text is intended for the undergraduate course in math methods, with an audience of physics and engineering majors. As a required course in most departments, the text relies heavily on explained examples, real-world applications and student engagement. Supporting the use of active learning, a strong focus is placed upon physical motivation combined with a versatile coverage of topics that can be used as a reference after students complete the course. Each chapter begins with an overview that includes a list of prerequisite knowledge, a list of skills that will be covered in the chapter, and an outline of the sections. Next comes the motivating exercise, which steps the students through a real-world physical problem that requires the techniques taught in each chapter.


Complex Integration and Cauchy's Theorem

Complex Integration and Cauchy's Theorem

Author: G. N. Watson

Publisher:

Published: 1914

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

Originally published in 1914, this book provides a concise proof of Cauchy's Theorem, with applications of the theorem to the evaluation of definite integrals.