Visualization and Processing of Tensor Fields

Visualization and Processing of Tensor Fields

Author: Joachim Weickert

Publisher: Springer Science & Business Media

Published: 2007-06-25

Total Pages: 478

ISBN-13: 3540312722

DOWNLOAD EBOOK

Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.


Visualization and Processing of Tensor Fields

Visualization and Processing of Tensor Fields

Author: David H. Laidlaw

Publisher: Springer Science & Business Media

Published: 2009-03-30

Total Pages: 379

ISBN-13: 3540883789

DOWNLOAD EBOOK

This book provides researchers an inspirational look at how to process and visualize complicated 2D and 3D images known as tensor fields. With numerous color figures, it details both the underlying mathematics and the applications of tensor fields.


Hierarchical and Geometrical Methods in Scientific Visualization

Hierarchical and Geometrical Methods in Scientific Visualization

Author: Gerald Farin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 363

ISBN-13: 3642557872

DOWNLOAD EBOOK

The nature of the physical Universe has been increasingly better understood in recent years, and cosmological concepts have undergone a rapid evolution (see, e.g., [11], [2],or [5]). Although there are alternate theories, it is generally believed that the large-scale relationships and homogeneities that we see can only be explainedby having the universe expand suddenlyin a very early “in?ationary” period. Subsequent evolution of the Universe is described by the Hubble expansion, the observation that the galaxies are ?ying away from each other. We can attribute di?erent rates of this expansion to domination of di?erent cosmological processes, beginning with radiation, evolving to matter domination, and, relatively recently, to vacuum domination (the Cosmological Constant term)[4]. We assume throughout that we will be relying as much as possible on observational data, with simulations used only for limited purposes, e.g., the appearance of the Milky Wayfrom nearbyintergalactic viewpoints. The visualization of large-scale astronomical data sets using?xed, non-interactive animations has a long history. Several books and ?lms exist, ranging from “Cosmic View: The Universe in Forty Jumps” [3] by Kees Boeke to “Powers of 10” [6,13] by Charles and Ray Eames, and the recent Imax ?lm “Cosmic Voyage” [15]. We have added our own contribution [9], “Cosmic Clock,” which is an animation based entirely on the concepts and implementation described in this paper.


Topological Methods in Data Analysis and Visualization VI

Topological Methods in Data Analysis and Visualization VI

Author: Ingrid Hotz

Publisher: Springer Nature

Published: 2021-09-28

Total Pages: 372

ISBN-13: 3030835006

DOWNLOAD EBOOK

This book is a result of a workshop, the 8th of the successful TopoInVis workshop series, held in 2019 in Nyköping, Sweden. The workshop regularly gathers some of the world’s leading experts in this field. Thereby, it provides a forum for discussions on the latest advances in the field with a focus on finding practical solutions to open problems in topological data analysis for visualization. The contributions provide introductory and novel research articles including new concepts for the analysis of multivariate and time-dependent data, robust computational approaches for the extraction and approximations of topological structures with theoretical guarantees, and applications of topological scalar and vector field analysis for visualization. The applications span a wide range of scientific areas comprising climate science, material sciences, fluid dynamics, and astronomy. In addition, community efforts with respect to joint software development are reported and discussed.


Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data

Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data

Author: Carl-Fredrik Westin

Publisher: Springer

Published: 2014-07-17

Total Pages: 346

ISBN-13: 3642543014

DOWNLOAD EBOOK

Arising from the fourth Dagstuhl conference entitled Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data (2011), this book offers a broad and vivid view of current work in this emerging field. Topics covered range from applications of the analysis of tensor fields to research on their mathematical and analytical properties. Part I, Tensor Data Visualization, surveys techniques for visualization of tensors and tensor fields in engineering, discusses the current state of the art and challenges, and examines tensor invariants and glyph design, including an overview of common glyphs. The second Part, Representation and Processing of Higher-order Descriptors, describes a matrix representation of local phase, outlines mathematical morphological operations techniques, extended for use in vector images, and generalizes erosion to the space of diffusion weighted MRI. Part III, Higher Order Tensors and Riemannian-Finsler Geometry, offers powerful mathematical language to model and analyze large and complex diffusion data such as High Angular Resolution Diffusion Imaging (HARDI) and Diffusion Kurtosis Imaging (DKI). A Part entitled Tensor Signal Processing presents new methods for processing tensor-valued data, including a novel perspective on performing voxel-wise morphometry of diffusion tensor data using kernel-based approach, explores the free-water diffusion model, and reviews proposed approaches for computing fabric tensors, emphasizing trabecular bone research. The last Part, Applications of Tensor Processing, discusses metric and curvature tensors, two of the most studied tensors in geometry processing. Also covered is a technique for diagnostic prediction of first-episode schizophrenia patients based on brain diffusion MRI data. The last chapter presents an interactive system integrating the visual analysis of diffusion MRI tractography with data from electroencephalography.


Visualization Handbook

Visualization Handbook

Author: Charles D. Hansen

Publisher: Elsevier

Published: 2011-08-30

Total Pages: 1061

ISBN-13: 0080481647

DOWNLOAD EBOOK

The Visualization Handbook provides an overview of the field of visualization by presenting the basic concepts, providing a snapshot of current visualization software systems, and examining research topics that are advancing the field. This text is intended for a broad audience, including not only the visualization expert seeking advanced methods to solve a particular problem, but also the novice looking for general background information on visualization topics. The largest collection of state-of-the-art visualization research yet gathered in a single volume, this book includes articles by a "who's who of international scientific visualization researchers covering every aspect of the discipline, including:·Virtual environments for visualization·Basic visualization algorithms·Large-scale data visualization·Scalar data isosurface methods·Visualization software and frameworks·Scalar data volume rendering·Perceptual issues in visualization·Various application topics, including information visualization.* Edited by two of the best known people in the world on the subject; chapter authors are authoritative experts in their own fields;* Covers a wide range of topics, in 47 chapters, representing the state-of-the-art of scientific visualization.


Lie Group Machine Learning

Lie Group Machine Learning

Author: Fanzhang Li

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-11-05

Total Pages: 593

ISBN-13: 3110498073

DOWNLOAD EBOOK

This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artifi cial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artifi cial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. Li Fanzhang is professor at the Soochow University, China. He is director of network security engineering laboratory in Jiangsu Province and is also the director of the Soochow Institute of industrial large data. He published more than 200 papers, 7 academic monographs, and 4 textbooks. Zhang Li is professor at the School of Computer Science and Technology of the Soochow University. She published more than 100 papers in journals and conferences, and holds 23 patents. Zhang Zhao is currently an associate professor at the School of Computer Science and Technology of the Soochow University. He has authored and co-authored more than 60 technical papers.


New Developments in the Visualization and Processing of Tensor Fields

New Developments in the Visualization and Processing of Tensor Fields

Author: David H. Laidlaw

Publisher: Springer Science & Business Media

Published: 2012-09-14

Total Pages: 389

ISBN-13: 3642273432

DOWNLOAD EBOOK

Bringing together key researchers in disciplines ranging from visualization and image processing to applications in structural mechanics, fluid dynamics, elastography, and numerical mathematics, the workshop that generated this edited volume was the third in the successful Dagstuhl series. Its aim, reflected in the quality and relevance of the papers presented, was to foster collaboration and fresh lines of inquiry in the analysis and visualization of tensor fields, which offer a concise model for numerous physical phenomena. Despite their utility, there remains a dearth of methods for studying all but the simplest ones, a shortage the workshops aim to address. Documenting the latest progress and open research questions in tensor field analysis, the chapters reflect the excitement and inspiration generated by this latest Dagstuhl workshop, held in July 2009. The topics they address range from applications of the analysis of tensor fields to purer research into their mathematical and analytical properties. They show how cooperation and the sharing of ideas and data between those engaged in pure and applied research can open new vistas in the study of tensor fields.


Data Visualization

Data Visualization

Author: Alexandru C. Telea

Publisher: CRC Press

Published: 2014-09-18

Total Pages: 618

ISBN-13: 1466585277

DOWNLOAD EBOOK

Designing a complete visualization system involves many subtle decisions. When designing a complex, real-world visualization system, such decisions involve many types of constraints, such as performance, platform (in)dependence, available programming languages and styles, user-interface toolkits, input/output data format constraints, integration wi


Anisotropy Across Fields and Scales

Anisotropy Across Fields and Scales

Author: Evren Özarslan

Publisher: Springer Nature

Published: 2021

Total Pages: 284

ISBN-13: 3030562158

DOWNLOAD EBOOK

This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.