Pluripotent stem cells have the potential to revolutionise medicine, providing treatment options for a wide range of diseases and conditions that currently lack therapies or cures. This book describes methodological advances in the culture and manipulation of embryonic stem cells that will serve to bring this promise to practice.
Stem cells have generated a lot of excitement among the researchers, clinicians and the public alike. Various types of stem cells are being evaluated for their regenerative potential. Marginal benefit resulting by transplanting autologus stem cells (deemed to be absolutely safe) in various clinical conditions has been proposed to be a growth factor effect rather than true regeneration. In contrast, various pre-clinical studies have been undertaken, using differentiated cells from embryonic stem cells or induced pluripotent stem cells have shown promise, functional improvement and no signs of teratoma formation. The scientists are not in a rush to reach the clinic but a handful of clinical studies have shown promise. This book is a collection of studies/reviews, beginning with an introduction to the pluripotent stem cells and covering various aspects like derivation, differentiation, ethics, etc., and hence would provide insight into the recent standing on the pluripotent stem cells biology. The chapters have been categorized into three sections, covering subjects ranging from the generation of pluripotent stem cells and various means of their derivation from embryonic as well as adult tissues, the mechanistic understanding of pluripotency and narrating the potential therapeutic implications of these in vitro generated cells in various diseases, in addition to the associated pros and cons in the same.
This book provides thorough coverage of high-throughput OMICs technologies for the monitoring of stem cells and regenerative medicine. Specific topics covered include the genomics, proteomics, and metabolomics aspects of regenerative medicine, metabolic profiling of mesenchymal stem cells, genome profiling of mesenchymal stem cells, OMICs monitoring of stem cell-derived exosomes, stem cell proteomics, lipidomics, OMICs profiling of cancer (stem) cells, and finally ethical considerations of OMICs-based investigations. Chapters are authored by world-renowned scientists who have valuable expertise in the field of OMICs and regenerative medicine. Genomics, Proteomics, and Metabolomics: Stem Cells Monitoring in Regenerative Medicine, part of Springer’s Stem Cell Biology and Regenerative Medicine series, is essential reading for researchers, clinicians, biologists, biochemists, and pharmaceutical experts conducting research in the fields of stem cell biology, molecular aspects of stem cell research, tissue engineering, regenerative medicine, cellular therapy, OMICs, bioinformatics, and ethics.
This book discusses biomedical spectroscopy and the applications of spectroscopic techniques in advanced medical technology. Applicable to scientists and medical professionals, the aim of this work is to enable them to work together in this field, so that healthcare facilities can be made routinely available in a cost-effective manner—especially for developing countries which may not be able to afford universal healthcare with present day expensive medical technologies. The subject matter of this book also covers – Instrumentation, Experimental Techniques and Computational Methods Spectroscopy of Animal Models Microspectroscopy for Biomedical Applications Clinical Applications of Optical Spectroscopy Spectroscopy of Human Models Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan and Bhutan)
The book Biomaterials in Regenerative Medicine is addressed to the engineers and mainly medical practitioners as well as scientists and PhD degree students. The book indicates the progress in research and in the implementation of the ever-new biomaterials for the application of the advanced types of prosthesis, implants, scaffolds and implant-scaffolds including personalised ones. The book presents a theoretical approach to the synergy of technical, biological and medical sciences concerning materials and technologies used for medical and dental implantable devices and on metallic biomaterials. The essential contents of the book are 16 case studies provided in each of the chapters, comprehensively describing the authors' accomplishments of numerous teams from different countries across the world in advanced research areas relating to the biomaterials applied in regenerative medicine and dentistry. The detailed information collected in the book, mainly deriving from own and original research and R
A discussion of all the key issues in the use of human pluripotent stem cells for treating degenerative diseases or for replacing tissues lost from trauma. On the practical side, the topics range from the problems of deriving human embryonic stem cells and driving their differentiation along specific lineages, regulating their development into mature cells, and bringing stem cell therapy to clinical trials. Regulatory issues are addressed in discussions of the ethical debate surrounding the derivation of human embryonic stem cells and the current policies governing their use in the United States and abroad, including the rules and conditions regulating federal funding and questions of intellectual property.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
Advances in Tissue Engineering is a unique volume and the first of its kind to bring together leading names in the field of tissue engineering and stem cell research. A relatively young science, tissue engineering can be seen in both scientific and sociological contexts and successes in the field are now leading to clinical reality. This book attempts to define the path from basic science to practical application. A contribution from the UK Stem Cell Bank and opinions of venture capitalists offer a variety of viewpoints, and exciting new areas of stem cell biology are highlighted. With over fifty stellar contributors, this book presents the most up-to-date information in this very topical and exciting field./a
This book is on oil and natural gas well logging, and is based on the author's lectures at the University of Southern California. The first seven chapters discuss logging techniques and devices: spontaneous potential, gamma rays, resistivity, density, neutron logs, and acoustic logs. The remaining chapters discuss the various methods for integrating and analyzing this data.