Metaheuristics in Machine Learning: Theory and Applications

Metaheuristics in Machine Learning: Theory and Applications

Author: Diego Oliva

Publisher: Springer Nature

Published:

Total Pages: 765

ISBN-13: 3030705420

DOWNLOAD EBOOK

This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.


Meta-Heuristics

Meta-Heuristics

Author: Ibrahim H. Osman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 676

ISBN-13: 1461313619

DOWNLOAD EBOOK

Meta-heuristics have developed dramatically since their inception in the early 1980s. They have had widespread success in attacking a variety of practical and difficult combinatorial optimization problems. These families of approaches include, but are not limited to greedy random adaptive search procedures, genetic algorithms, problem-space search, neural networks, simulated annealing, tabu search, threshold algorithms, and their hybrids. They incorporate concepts based on biological evolution, intelligent problem solving, mathematical and physical sciences, nervous systems, and statistical mechanics. Since the 1980s, a great deal of effort has been invested in the field of combinatorial optimization theory in which heuristic algorithms have become an important area of research and applications. This volume is drawn from the first conference on Meta-Heuristics and contains 41 papers on the state-of-the-art in heuristic theory and applications. The book treats the following meta-heuristics and applications: Genetic Algorithms, Simulated Annealing, Tabu Search, Networks & Graphs, Scheduling and Control, TSP, and Vehicle Routing Problems. It represents research from the fields of Operations Research, Management Science, Artificial Intelligence and Computer Science.


Applications of Hybrid Metaheuristic Algorithms for Image Processing

Applications of Hybrid Metaheuristic Algorithms for Image Processing

Author: Diego Oliva

Publisher: Springer Nature

Published: 2020-03-27

Total Pages: 488

ISBN-13: 3030409775

DOWNLOAD EBOOK

This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.


Metaheuristic Algorithms for Image Segmentation: Theory and Applications

Metaheuristic Algorithms for Image Segmentation: Theory and Applications

Author: Diego Oliva

Publisher: Springer

Published: 2019-03-02

Total Pages: 229

ISBN-13: 3030129314

DOWNLOAD EBOOK

This book presents a study of the most important methods of image segmentation and how they are extended and improved using metaheuristic algorithms. The segmentation approaches selected have been extensively applied to the task of segmentation (especially in thresholding), and have also been implemented using various metaheuristics and hybridization techniques leading to a broader understanding of how image segmentation problems can be solved from an optimization perspective. The field of image processing is constantly changing due to the extensive integration of cameras in devices; for example, smart phones and cars now have embedded cameras. The images have to be accurately analyzed, and crucial pre-processing steps, like image segmentation, and artificial intelligence, including metaheuristics, are applied in the automatic analysis of digital images. Metaheuristic algorithms have also been used in various fields of science and technology as the demand for new methods designed to solve complex optimization problems increases. This didactic book is primarily intended for undergraduate and postgraduate students of science, engineering, and computational mathematics. It is also suitable for courses such as artificial intelligence, advanced image processing, and computational intelligence. The material is also useful for researches in the fields of evolutionary computation, artificial intelligence, and image processing.


Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems

Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems

Author: Essam Halim Houssein

Publisher: Springer Nature

Published: 2022-06-04

Total Pages: 501

ISBN-13: 3030990796

DOWNLOAD EBOOK

This book collects different methodologies that permit metaheuristics and machine learning to solve real-world problems. This book has exciting chapters that employ evolutionary and swarm optimization tools combined with machine learning techniques. The fields of applications are from distribution systems until medical diagnosis, and they are also included different surveys and literature reviews that will enrich the reader. Besides, cutting-edge methods such as neuroevolutionary and IoT implementations are presented in some chapters. In this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and can be used in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the material can be helpful for research from the evolutionary computation, artificial intelligence communities.


Metaheuristics for Machine Learning

Metaheuristics for Machine Learning

Author: Kanak Kalita

Publisher: John Wiley & Sons

Published: 2024-03-28

Total Pages: 272

ISBN-13: 1394233930

DOWNLOAD EBOOK

METAHEURISTICS for MACHINE LEARNING The book unlocks the power of nature-inspired optimization in machine learning and presents a comprehensive guide to cutting-edge algorithms, interdisciplinary insights, and real-world applications. The field of metaheuristic optimization algorithms is experiencing rapid growth, both in academic research and industrial applications. These nature-inspired algorithms, which draw on phenomena like evolution, swarm behavior, and neural systems, have shown remarkable efficiency in solving complex optimization problems. With advancements in machine learning and artificial intelligence, the application of metaheuristic optimization techniques has expanded, demonstrating significant potential in optimizing machine learning models, hyperparameter tuning, and feature selection, among other use-cases. In the industrial landscape, these techniques are becoming indispensable for solving real-world problems in sectors ranging from healthcare to cybersecurity and sustainability. Businesses are incorporating metaheuristic optimization into machine learning workflows to improve decision-making, automate processes, and enhance system performance. As the boundaries of what is computationally possible continue to expand, the integration of metaheuristic optimization and machine learning represents a pioneering frontier in computational intelligence, making this book a timely resource for anyone involved in this interdisciplinary field. Metaheuristics for Machine Learning: Algorithms and Applications serves as a comprehensive guide to the intersection of nature-inspired optimization and machine learning. Authored by leading experts, this book seamlessly integrates insights from computer science, biology, and mathematics to offer a panoramic view of the latest advancements in metaheuristic algorithms. You’ll find detailed yet accessible discussions of algorithmic theory alongside real-world case studies that demonstrate their practical applications in machine learning optimization. Perfect for researchers, practitioners, and students, this book provides cutting-edge content with a focus on applicability and interdisciplinary knowledge. Whether you aim to optimize complex systems, delve into neural networks, or enhance predictive modeling, this book arms you with the tools and understanding you need to tackle challenges efficiently. Equip yourself with this essential resource and navigate the ever-evolving landscape of machine learning and optimization with confidence. Audience The book is aimed at a broad audience encompassing researchers, practitioners, and students in the fields of computer science, data science, engineering, and mathematics. The detailed but accessible content makes it a must-have for both academia and industry professionals interested in the optimization aspects of machine learning algorithms.


Machine Learning Paradigms: Theory and Application

Machine Learning Paradigms: Theory and Application

Author: Aboul Ella Hassanien

Publisher: Springer

Published: 2018-12-08

Total Pages: 472

ISBN-13: 3030023575

DOWNLOAD EBOOK

The book focuses on machine learning. Divided into three parts, the first part discusses the feature selection problem. The second part then describes the application of machine learning in the classification problem, while the third part presents an overview of real-world applications of swarm-based optimization algorithms. The concept of machine learning (ML) is not new in the field of computing. However, due to the ever-changing nature of requirements in today’s world it has emerged in the form of completely new avatars. Now everyone is talking about ML-based solution strategies for a given problem set. The book includes research articles and expository papers on the theory and algorithms of machine learning and bio-inspiring optimization, as well as papers on numerical experiments and real-world applications.


Essentials of Metaheuristics (Second Edition)

Essentials of Metaheuristics (Second Edition)

Author: Sean Luke

Publisher:

Published: 2012-12-20

Total Pages: 242

ISBN-13: 9781300549628

DOWNLOAD EBOOK

Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate students, programmers, and non-experts. The book covers a wide range of algorithms, representations, selection and modification operators, and related topics, and includes 71 figures and 135 algorithms great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the Steady-State Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, Genetic Programming variants, One- and Two-Population Competitive Coevolution, N-Population Cooperative Coevolution, Implicit Fitness Sharing, Deterministic Crowding, NSGA-II, SPEA2, GRASP, Ant Colony Optimization variants, Guided Local Search, LEM, PBIL, UMDA, cGA, BOA, SAMUEL, ZCS, XCS, and XCSF.


Application of Advanced Optimization Techniques for Healthcare Analytics

Application of Advanced Optimization Techniques for Healthcare Analytics

Author: Mohamed Abdel-Basset

Publisher: CRC Press

Published: 2023-04-11

Total Pages: 245

ISBN-13: 1000852814

DOWNLOAD EBOOK

Application of Advanced Optimization Techniques for Healthcare Analytics, 1st Edition, is an excellent compilation of current and advanced optimization techniques which can readily be applied to solve different hospital management problems. The healthcare system is currently a topic of significant investigation to make life easier for those who are disabled, old, or sick, as well as for young children. The emphasis of the healthcare system has evolved throughout time due to several emerging beneficial technologies, such as personal digital assistants (PDAs), data mining, the internet of things, metaheuristics, fog computing, and cloud computing. Metaheuristics are strong technology for tackling several optimization problems in various fields, especially healthcare systems. The primary advantage of metaheuristic algorithms is their ability to find a better solution to a healthcare problem and their ability to consume as little time as possible. In addition, metaheuristics are more flexible compared to several other optimization techniques. These algorithms are not related to a specific optimization problem but could be applied to any optimization problem by making some small adaptations to become suitable to tackle it. The successful outcome of this book will enable a decision-maker or practitioner to pick a suitable optimization approach when making decisions to schedule patients under crowding environments with minimized human errors.


Metaheuristic and Machine Learning Optimization Strategies for Complex Systems

Metaheuristic and Machine Learning Optimization Strategies for Complex Systems

Author: R., Thanigaivelan

Publisher: IGI Global

Published: 2024-07-17

Total Pages: 423

ISBN-13:

DOWNLOAD EBOOK

In contemporary engineering domains, optimization and decision-making issues are crucial. Given the vast amounts of available data, processing times and memory usage can be substantial. Developing and implementing novel heuristic algorithms is time-consuming, yet even minor improvements in solutions can significantly reduce computational costs. In such scenarios, the creation of heuristics and metaheuristic algorithms has proven advantageous. The convergence of machine learning and metaheuristic algorithms offers a promising approach to address these challenges. Metaheuristic and Machine Learning Optimization Strategies for Complex Systems covers all areas of comprehensive information about hyper-heuristic models, hybrid meta-heuristic models, nature-inspired computing models, and meta-heuristic models. The key contribution of this book is the construction of a hyper-heuristic approach for any general problem domain from a meta-heuristic algorithm. Covering topics such as cloud computing, internet of things, and performance evaluation, this book is an essential resource for researchers, postgraduate students, educators, data scientists, machine learning engineers, software developers and engineers, policy makers, and more.