whole mesh. With this guaranteed lower bound, smoothing of the initial mesh or human interventions to improve the shape of the mesh become unnecessary.
Computational Science is the scienti?c discipline that aims at the development and understanding of new computational methods and techniques to model and simulate complex systems. The area of application includes natural systems – such as biology, envir- mental and geo-sciences, physics, and chemistry – and synthetic systems such as electronics and ?nancial and economic systems. The discipline is a bridge b- ween ‘classical’ computer science – logic, complexity, architecture, algorithms – mathematics, and the use of computers in the aforementioned areas. The relevance for society stems from the numerous challenges that exist in the various science and engineering disciplines, which can be tackled by advances made in this ?eld. For instance new models and methods to study environmental issues like the quality of air, water, and soil, and weather and climate predictions through simulations, as well as the simulation-supported development of cars, airplanes, and medical and transport systems etc. Paraphrasing R. Kenway (R.D. Kenway, Contemporary Physics. 1994): ‘There is an important message to scientists, politicians, and industrialists: in the future science, the best industrial design and manufacture, the greatest medical progress, and the most accurate environmental monitoring and forecasting will be done by countries that most rapidly exploit the full potential ofcomputational science’. Nowadays we have access to high-end computer architectures and a large range of computing environments, mainly as a consequence of the enormous s- mulus from the various international programs on advanced computing, e.g.
Contents: PREFACE; ACKNOWLEDGEMENTS; 1. Introduction; 2. Optimal shape design; 3. Partial differential equations for fluids; 4. Some numerical methods for fluids; 5. Sensitivity evaluation and automatic differentiation; 6. Parameterization and implementation issues; 7. Local and global optimization; 8. Incomplete sensitivities; 9. Consistent approximations and approximate gradients; 10. Numerical results on shape optimization; 11. Control of unsteady flows; 12. From airplane design to microfluidic; 13. Toplogical optimization for fluids; 14. Conclusion and perspectives; INDEX.
Written by authors at the forefront of modern algorithms research, Delaunay Mesh Generation demonstrates the power and versatility of Delaunay meshers in tackling complex geometric domains ranging from polyhedra with internal boundaries to piecewise smooth surfaces. Covering both volume and surface meshes, the authors fully explain how and why thes
This volume contains the articles presented at the 21st International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on October 7–10, 2012 in San Jose, CA, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics, and visualization.
This volume includes the lectures presented at the Tenth International Conference on Civil, Structural, and Environmental Engineering Computing and the Eighth International Conference on the Application of Artificial Intelligence to Civil, Structural, and Environmental Engineering held in Rome in August and September 2005. The lectures cover topics that include frameworks for structural analysis, evolutionary computation and visualisation, and the design of aluminium structures using eurocode.