As a significant business activity, merger and acquisition (M&A) generally means transactions in which the ownership of companies, other business organizations or their operating unitsaretransferredorcombined.
In real-world diagnostic procedures, due to the limitation of human cognitive competence, a medical expert may not conveniently use some crisp numbers to express the diagnostic information, and plenty of research has indicated that generalized fuzzy numbers play a significant role in describing complex diagnostic information.
This Special Issue presents original research papers that report on state-of-the-art and recent advancements in neutrosophic sets and logic in soft computing, artificial intelligence, big and small data mining, decision making problems, and practical achievements.
For any organization, the selection of suppliers is a very important step to increase productivity and profitability.Any organization or company seeks to use the bestmethodology and the appropriate technology to achieve its strategies and objectives. The present study employs the neutrosophic set for decision making and evaluation method (DEMATEL) to analyze and determine the factors influencing the selection of SCM suppliers. DEMATEL is considered a proactive approach to improve performance and achieve competitive advantages. This study applies the neutrosophic set Theory to adjust general judgment, using a new scale to present each value. A case study implementing the proposed methodology is presented (i.e. selecting the best supplier for a distribution company). This research was designed by neutrosophic DEMATEL data collection survey of experts, interviewing professionals in management, procurement and production. The results analyzed in our research prove that quality is the most influential criterion in the selection of suppliers.
Every organization seeks to set strategies for its development and growth and to do this, it must take into account the factors that affect its success or failure.
Fuzzy sets have experienced multiple expansions since their conception to enhance their capacity to convey complex information. Intuitionistic fuzzy sets, image fuzzy sets, q-rung orthopair fuzzy sets, and neutrosophic sets are a few of these extensions. Researchers and academics have acquired a lot of information about their theories and methods for making decisions. However, only a small number of research findings discuss how neutrosophic sets theory and their extensions (NSTEs) are used in education. The Handbook of Research on the Applications of Neutrosophic Sets Theory and Their Extensions in Education implements fresh scientific approaches to enhance the quality of decisions under neutrosophic environments, particularly within education. Covering key topics such as data modeling, educational technologies, decision making, and learning management systems, this major reference work is ideal for instructional designers, researchers, academicians, scholars, practitioners, instructors, and students.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Fuzzy logic, which is based on the concept of fuzzy set, has enabled scientists to create models under conditions of imprecision, vagueness, or both at once. As a result, it has now found many important applications in almost all sectors of human activity, becoming a complementary feature and supporter of probability theory, which is suitable for modelling situations of uncertainty derived from randomness. Fuzzy mathematics has also significantly developed at the theoretical level, providing important insights into branches of traditional mathematics like algebra, analysis, geometry, topology, and more. With such widespread applications, fuzzy sets and logic are an important area of focus in mathematics. The Handbook of Research on Advances and Applications of Fuzzy Sets and Logic studies recent theoretical advances of fuzzy sets and numbers, fuzzy systems, fuzzy logic and their generalizations, extensions, and more. This book also explores the applications of fuzzy sets and logic applied to science, technology, and everyday life to further provide research on the subject. This book is ideal for mathematicians, physicists, computer specialists, engineers, practitioners, researchers, academicians, and students who are looking to learn more about fuzzy sets, fuzzy logic, and their applications.