Experts in the areas of water science and chemistry from the government, industry, and academic arenas discussed ways to maximize opportunities for these disciplines to work together to develop and apply simple technologies while addressing some of the world's key water and health problems. Since global water challenges cross both scientific disciplines, the chemical sciences have the ability to be a key player in improving the lives of billions of people around the world.
Mercury is widespread in our environment. Methylmercury, one organic form of mercury, can accumulate up the aquatic food chain and lead to high concentrations in predatory fish. When consumed by humans, contaminated fish represent a public health risk. Combustion processes, especially coal-fired power plants, are major sources of mercury contamination in the environment. The U.S. Environmental Protection Agency (EPA) is considering regulating mercury emissions from those plants. Toxicological Effects of Methylmercury reviews the health effects of methylmercury and discusses the estimation of mercury exposure from measured biomarkers, how differences between individuals affect mercury toxicity, and appropriate statistical methods for analysis of the data and thoroughly compares the epidemiological studies available on methylmercury. Included are discussions of current mercury levels on public health and a delineation of the scientific aspects and policy decisions involved in the regulation of mercury. This report is a valuable resource for individuals interested in the public health effects and regulation of mercury. The report also provides an excellent example of the implications of decisions in the risk assessment process for a larger audience.
Mercury is widespread in our environment. Methylmercury, an organic form of mercury, can accumulate in the aquatic food chain and lead to high concentrations in predatory fish. When consumed by humans, contaminated fish represent a public health risk. Toxic Effects of Mercury intends to facilitate among its readers the understanding of the importance of mercury pollution in the environment and the health consequences associated with exposure to this metal. The knowledge on methylmercury (MeHg) toxicity collected over the years is undoubtedly robust creating an impression all that is to be learnt about this metal has already been accomplished. However, in large measure, past knowledge has merely laid the ground for interesting questions that have yet to be fully addressed and concepts have yet to be deciphered. One of my major goals was to make a valiant attempt to include state-of-the-art information on the mechanisms of mercury toxicity, describing its effects on cultured cellular systems as well as in whole living organisms, starting from the lessons learned from the tragic events in Minamata Bay, Japan. A special focus of the book is on the neurotoxic effects of MeHg. An understanding at the cellular level is necessary to gather information on the structural and functional alterations induced by MeHg and how they possibly become unmasked and evident at the behavioral level, 32 chapters of the book have been organised having these considerations in mind. This book will provide state-of-the-art information to the graduate students training in toxicology, risk assessors, researchers and medical providers at large. It is aimed to bring the readers updated information on contemporary issues associated with exposure to methylmercury, from its effects on stem cells and neurons to population studies. It is a valuable resource for individuals interested in the public health effects and regulation of mercury. The report provides an excellent example of the implications of decisions in the risk assessment process for a larger audience and is written with the hope that the information will provide better understanding of the mercury problems which confront us.
ACKNOWLEDGEMENTS xiv PART I MERCURY AND HUMAN HEALTH B. WHEATLEY and S. PARADIS I Exposure of Canadian Aboriginal Peoples to Methylmercury 3-11 M. GIRARD and C. DUMONT I Exposure of James Bay Cree to Methylmercury during Pregnancy for the Years 1983-91 13-19 M. RICHARDSON, M. MITCHELL, S. COAD and R. RAPHAEL I Exposure to Mercury in Canada: A Multimedia Analysis 21-30 M. RICHARDSON, M. EGYED and D. J. CURRIE I Human Exposure to Mercury may Decrease as Acidic Deposition Increases 31-39 L. E. FLEMING, S. WATKINS, R. KADERMAN, B. LEVIN, D. R. AVYAR, M. BIZZIO, D. STEPHENS and J. A. BEAN I Mercury Exposure in Humans through Food Consumption from the Everglades of Florida 41-48 J. M. GEARHART, H. J. CLEWELL III, K. S. CRUMP, A. M. SHIPP and A. SILVERS I Pharmacokinetic Dose Estimates of Mercury in Children and Dose-Response Curves of Performance Tests in a Large Epidemiological Study 49-58 I. SKARE I Mass Balance and Systemic Uptake of Mercury Released from Dental Amalgam Fillings 59-67 J. DELLINGER, N. KMIECIK, S. GERSTENBERGER and H. NGU I Mercury Contamina tion of Fish in the Ojibwa Diet: I. Walleye Fillets and Skin-On versus Skin-Off Sampling 69-76 J. DELLINGER, L. MALEK and M. BEATTIE I Mercury Contamination of Fish in the Ojibwa Diet: II. Sensory Evoked Responses in Rats Fed Walleye 77-83 H. AKAGI, O. MALM, F. J. P. BRANCHES, Y. KINJO, Y. KASHIMA, J. R. D. GUIMARAES, R. B. OLIVEIRA, K. HARAGUCHI, W. C. PFEIFFER, Y.
People are increasingly concerned about potential environmental health hazards and often ask their physicians questions such as: "Is the tap water safe to drink?" "Is it safe to live near power lines?" Unfortunately, physicians often lack the information and training related to environmental health risks needed to answer such questions. This book discusses six competency based learning objectives for all medical school students, discusses the relevance of environmental health to specific courses and clerkships, and demonstrates how to integrate environmental health into the curriculum through published case studies, some of which are included in one of the book's three appendices. Also included is a guide on where to obtain additional information for treatment, referral, and follow-up for diseases with possible environmental and/or occupational origins.
Essential themes in the biochemical cycling of mercury are the relative importance of anthropogenic versus natural sources, transformation and migration processes at the local, regional and global scale, global emission inventories of different mercury sources (both point and diffuse) of both natural and anthropogenic origin. In this regard, Siberia, with its vast territory and variety of natural zones, is of special interest in the global mercury cycle and in terms of the influence of geographical zones on source and sink terms in regional budgets. Siberia contains large areas of mercuriferous belts; natural deposits that emit mercury into the atmosphere and water. Siberian gold has been mined with the use of mercury since the early 1800s. But there, too, huge forest zones and vast areas of tundra and wetland (bogs) can act as efficient sinks for atmospheric mercury. Audience: Environmental scientists, legislators, politicians and the interested citizen wishing to gain a clear picture of the biogeochemical cycling of mercury.
An up-to-date overview of the characterization, risk assessment and remediation of mercury-contaminated sites. The book summarizes, for the first time, works from Europe, Russia and the American continent, and review chapters are supplemented by detailed, international case studies.
On cover: IPCS International Programme on Chemical Safety. Published under the joint sponsorship of WHO, the United Nations Environment Programme, and the International Labour Organization and produced within the framework of the Inter-organization Programme for the Sound Management of Chemicals (IPCS).