Brittle Failure of Rock Materials

Brittle Failure of Rock Materials

Author: G.E. Andreev

Publisher: CRC Press

Published: 1995-01-01

Total Pages: 464

ISBN-13: 9789054106029

DOWNLOAD EBOOK

This text comprises different basic aspects of brittle failure for rocks. It considers classical and contemporary models, as well as failure patterns under different loading schemes.


Rock Mechanics

Rock Mechanics

Author: Leopold Müller

Publisher: Springer Science & Business Media

Published: 1982-02-01

Total Pages: 406

ISBN-13: 9783211813010

DOWNLOAD EBOOK

Much of the research on fracture of rocks or rock-like materials conducted over the past two decades may be considered as "academic studies" of the general phenomenon of fracture. Yet, the understanding of this phenomenon is fundamental if a material is used in any engineering design, whether the aim is to prevent failure of the structure or to promote it. Fracture theories existing are generally empirical and derived from experimental results of laboratory test with simple boundary conditions. Because of the basic weakness of rock intension and because in general the environmental stresses in rock mechanics are compressive most of these theories consider fracture under compressive stress conditions. The Coulomb-Navier-, the Mohr-, the Griffith and the McClintock and Walsh criteria are typical examples and will be considered in the following. In addition the tendency during the past was in making accurate experiments under conditions of homogeneous stresses. To obtain information about the fracture behaviour with unequal principal stresses systems have to be used which involve inhomogeneous stresses. This case is of particular interest, since in practical rock mechanics we may expect conditions of highly inhomogeneous stresses. However, a consideration of such situations involve additional assumptions like the applicability of the theory of elasticity for calculating the stress field, which may be open to question. A distinction has to be made between fracture initiation and fracture propagation, since a detailed observation of the total fracture process in rock was possible by means of "stiff" and "servo-controlled" loading systems.


Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics

Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics

Author: G. Baker

Publisher: CRC Press

Published: 2004-01-14

Total Pages: 593

ISBN-13: 0203223454

DOWNLOAD EBOOK

This book derives from the invited IUTAM Symposium in September 1993. The contributions discuss recent advances in fracture mechanics studies of concrete, rock, ceramics and other brittle disordered materials at micro and structural levels. It draws together research and new applications in continuum, damage and fracture mechanics approaches.


Geologic Fracture Mechanics

Geologic Fracture Mechanics

Author: Richard A. Schultz

Publisher: Cambridge University Press

Published: 2019-08-08

Total Pages: 611

ISBN-13: 1107189993

DOWNLOAD EBOOK

Introduction to geologic fracture mechanics covering geologic structural discontinuities from theoretical and field-based perspectives.


Rock Failure Mechanisms

Rock Failure Mechanisms

Author: Chun'An Tang

Publisher: CRC Press

Published: 2010-08-06

Total Pages: 366

ISBN-13: 0415498511

DOWNLOAD EBOOK

When dealing with rock in civil engineering, mining engineering and other engineering, the process by which the rock fails under load should be understood, so that safe structures can be built on and in the rock. However, there are many ways for loading rock and rock can have a variety of idiosyncracies. This reference book provides engineers and researchers with the essential knowledge for a clear understanding of the process of rock failure under different conditions. It contains an introductory chapter explaining the role of rock failure in engineering projects plus a summary of the theories governing rock failure and an explanation of the computer simulation method. It subsquently deals in detail with explaining, simulating and illustrating rock failure in laboratory and field. The concluding chapter discusses coupled modelling and the anticipated future directions for this type of computer simulation. An appendix describing the RFPA numerical model (Rock Failure Process Analysis program) is also included. About the Authors Chun'an Tang has a PhD in Mining Engineering and is a Professor at the School of Civil & Hydraulic Engineering at Dalian University of Technology in China. He is an advisor for design and stablity problem modelling in mining and civil rock engineeringand and Chairman of the China National Group of the International Society for Rock Mechanics. John Hudson is emeritus professor at Imperial College, London and is active as an independant consultant for Rock Engineering Consultants. He has a PhD in Rock Mechanics and completed over a 130 rock engineering consulting assignments in mining and civil engineering. He is a fellow at the Royal Academy of Engineering in the UK and President of the International Society for Rock Mechanics.


Rock Fractures in Geological Processes

Rock Fractures in Geological Processes

Author: Agust Gudmundsson

Publisher: Cambridge University Press

Published: 2011-04-28

Total Pages: 593

ISBN-13: 1139500694

DOWNLOAD EBOOK

Rock fractures control many of Earth's dynamic processes, including plate-boundary development, tectonic earthquakes, volcanic eruptions, and fluid transport in the crust. An understanding of rock fractures is also essential for effective exploitation of natural resources such as ground water, geothermal water, and petroleum. This book combines results from fracture mechanics, materials science, rock mechanics, structural geology, hydrogeology, and fluid mechanics to explore and explain fracture processes and fluid transport in the crust. Basic concepts are developed from first principles and illustrated with worked examples linking models of geological processes to real field observations and measurements. Many additional examples and exercises are provided online, allowing readers to practise formulating and quantitative testing of models. Rock Fractures in Geological Processes is designed for courses at the advanced undergraduate and graduate level but also forms a vital resource for researchers and industry professionals concerned with fractures and fluid transport in the Earth's crust.