New edition exploring the mechanical features of biological cells for advanced undergraduate and graduate students in physics and biomedical engineering.
This book focuses on the mechanical properties of cells, discussing the basic concepts and processes in the fields of immunology, biology, and biochemistry. It introduces and explains state-of-the-art biophysical methods and examines the role of mechanical properties in the cell/protein interaction with the connective tissue microenvironment. The book presents a unique perspective on cellular mechanics and biophysics by combining the mechanical, biological, physical, biochemical, medical, and immunological views, highlighting the importance of the mechanical properties of cells and biophysical measurement methods. The book guides readers through the complex and growing field of cellular mechanics and biophysics, connecting and discussing research findings from different fields such as biology, cell biology, immunology, physics, and medicine. Featuring suggestions for further reading throughout and addressing a wide selection of biophysical topics, this book is an indispensable guide for graduate and advanced undergraduate students in the fields of cellular mechanics and biophysics.
Introduction to Cell Mechanics and Mechanobiology is designed for a one-semester course in the mechanics of the cell offered to advanced undergraduate and graduate students in biomedical engineering, bioengineering, and mechanical engineering. It teaches a quantitative understanding of the way cells detect, modify, and respond to the physical prope
Explores a Range of Multiscale Biomechanics/Mechanobiology ConceptsCell and Matrix Mechanics presents cutting-edge research at the molecular, cellular, and tissue levels in the field of cell mechanics. This book involves key experts in the field, and covers crucial areas of cell and tissue mechanics, with an emphasis on the roles of mechanical forc
"Advances in Cell Mechanics" presents the latest developments in cell mechanics and biophysics, mainly focusing on interdisciplinary research in cell biology and the biophysics of cells. Moreover, a unique feature of the book is its emphasis on the molecular and complex continuum modeling and simulations of the cells. It may be the first work that brings rigorous and quantitative scientific analysis and state-of-the-art simulation technology into cell biology research. The book is intended for researchers and graduate students working in the fields of molecular cell biology, bio-engineering and bio-mechanics, soft matter physics, computational mechanics, bio-chemistry and bio-medicine. All contributors are leading scholars in their respective fields. Dr. Shaofan Li is a professor and an expert for computational mechanics at the University of California-Berkeley, USA; Dr. Bohua Sun is a professor at Cape Peninsula University of Technology, South Africa.
Ubiquitous and fundamental in cell mechanics, multiscale problems can arise in the growth of tumors, embryogenesis, tissue engineering, and more. Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling brings together new insight and research on mechanical, mathematical, physical, and biological approaches for simulating the behavior
Physical Biology of the Cell is a textbook for a first course in physical biology or biophysics for undergraduate or graduate students. It maps the huge and complex landscape of cell and molecular biology from the distinct perspective of physical biology. As a key organizing principle, the proximity of topics is based on the physical concepts that
This book presents a full spectrum of views on current approaches to modeling cell mechanics. The authors come from the biophysics, bioengineering and physical chemistry communities and each joins the discussion with a unique perspective on biological systems. Consequently, the approaches range from finite element methods commonly used in continuum mechanics to models of the cytoskeleton as a cross-linked polymer network to models of glassy materials and gels. Studies reflect both the static, instantaneous nature of the structure, as well as its dynamic nature due to polymerization and the full array of biological processes. While it is unlikely that a single unifying approach will evolve from this diversity, it is the hope that a better appreciation of the various perspectives will lead to a highly coordinated approach to exploring the essential problems and better discussions among investigators with differing views.
This book is an introduction to the mechanical properties, the force generating capacity, and the sensitivity to mechanical cues of the biological system. To understand how these qualities govern many essential biological processes, we also discuss how to measure them. However, before delving into the details and the techniques, we will first learn the operational definitions in mechanics, such as force, stress, elasticity, viscosity and so on. This book will explore the mechanics at three different length scales – molecular, cellular, and tissue levels – sequentially, and discuss the measurement techniques to quantify the intrinsic mechanical properties, force generating capacity, mechanoresponsive processes in the biological systems, and rupture forces.