This book forms the Proceedings of an International RILEM Symposium, the fourth in the series, on Testing of Bituminous Mixes in Budapest, Hungary, October 1990. The aim of the Symposium is to promote tests for the characterization, design and quality control of bituminous mixes which combine the best features of traditional and modern approaches. Among the topics covered are specimen preparation, tests with unique loading (Marshall test, uniaxial tension and creep tests etc), which are used for mix design or control of mechanical properties, and tests with repeated loading, which give information on fatigue, permanent deformation and moduli, especially for mix design.
This STAR on asphalt materials presents the achievements of RILEM TC 206 ATB, acquired over many years of interlaboratory tests and international knowledge exchange. It covers experimental aspects of bituminous binder fatigue testing; the background on compaction methods and imaging techniques for characterizing asphalt mixtures including validation of a new imaging software; it focuses on experimental questions and analysis tools regarding mechanical wheel tracking tests, comparing results from different labs and using finite element techniques. Furthermore, long-term rutting prediction and evaluation for an Austrian road are discussed, followed by an extensive analysis and test program on interlayer bond testing of three different test sections which were specifically constructed for this purpose. Finally, the key issue of manufacturing reclaimed hot mix asphalt in the laboratory is studied and recommendations for laboratory ageing of bituminous mixtures are given.
The aim of the studies presented in this report is the implementation of rational concepts and testing procedures for the design and manufacture of bituminous materials for applications in pavement construction. Practical test procedures are recommended for binder evaluation, mix design and performance assessment of bituminous materials. The three main topics addressed are binder testing, mix design and mechanical testing of mixtures. Each is examined through interlaboratory tests and there is a literary review of existing practices and methods for the production of polymer modified binders, mixture design and the mechanical properties of mixtures.
Bituminous Mixtures and Pavements contains 113 accepted papers from the 6th International ConferenceBituminous Mixtures and Pavements (6th ICONFBMP, Thessaloniki, Greece, 10-12 June 2015). The 6th ICONFBMP is organized every four years by the Highway Engineering Laboratory of the Aristotle University of Thessaloniki, Greece, in conjunction with
Highway engineers are facing the challenge not only to design and construct sustainable and safe pavements properly and economically. This implies a thorough understanding of materials behaviour, their appropriate use in the continuously changing environment, and implementation of constantly improved technologies and methodologies. Bituminous Mixtures and Pavements VII contains more than 100 contributions that were presented at the 7th International Conference ‘Bituminous Mixtures and Pavements’ (7ICONFBMP, Thessaloniki, Greece 12-14 June 2019). The papers cover a wide range of topics: - Bituminous binders - Aggregates, unbound layers and subgrade - Bituminous mixtures (Hot, Warm and Cold) - Pavements (Design, Construction, Maintenance, Sustainability, Energy and environment consideration) - Pavement management - Pavement recycling - Geosynthetics - Pavement assessment, surface characteristics and safety - Posters Bituminous Mixtures and Pavements VII reflects recent advances in highway materials technology and pavement engineering, and will be of interest to academics and professionals interested or involved in these areas.
Bituminous Mixtures and Pavements VIII contains 114 papers as presented at the 8th International Conference ‘Bituminous Mixtures and Pavements’ (8th ICONFBMP, 12-14 June 2024, Thessaloniki, Greece). The contributions reflect the research and practical experience of academics and practicing engineers from thirty-four (34) different countries, and cover a wide range of topics: Session I: Bitumen, Modified binders, Aggregates, and Subgrade Session II: Bituminous mixtures (Design, Construction, Testing, Performance) Session III: Pavements (Design, Construction, Maintenance, Sustainability, Energy and Environmental consideration) Session IV: Pavement management and Geosynthetics Session V: Pavement recycling Session VI: Pavement surface characteristics, Pavement performance monitoring, Safety Session VII: Biomaterials in pavement engineering Session VIII: Prediction models of pavement performance Bituminous Mixtures and Pavements VIII covers recent advances in highway materials technology and pavement engineering, and will be of interest to scientists and professionals involved or interested in these areas. The ICONFBMP-conferences have been organized every four years since 1992. This 8th conference was jointly organized by: Laboratory of Highway Engineering, Aristotle University of Thessaloniki, Greece; Built Environment Research Institute (BERI), University of Ulster, UK; University of Texas San Antonio (UTSA), USA; Laboratory for Advanced Construction Technology (LACT), Technological Institute of Iowa, USA; Technological University of Delft (TUDelft), The Netherlands, and University of Antwerp, (UA), Belgium.
Resulting from the Symposium on [title], held in December 1991, at the ASTM Standardization Meetings in San Diego, this volume comprises 19 papers in four sections: aggregates; mineral fillers; mixture evaluation; and fatigue, modeling, and theoretical. Member price, $52. Annotation copyright Book N
The design and construction of “long and deep” tunnels, i.e. tunnels under mountains, characterised by either considerable length and/or overburden, represent a considerable challenge. The scope of this book is not to instruct how to design and construct such tunnels but to share a method to identify the potential hazards related to the process of designing and constructing long and deep tunnels, to produce a relevant comprehensive analysis and listing, to quantify the probability and consequences, and to design proper mitigation measures and countermeasures. The design, developed using probabilistic methods, is verified during execution by means of the so called Plan for Advance of the Tunnel (PAT) method, which allows adapting the design and control parameters of the future stretches of the tunnel to the results of the stretches already finished, using the monitoring data base. Numerous criteria are given to identify the key parameters, necessary for the PAT procedure. Best practices of excavation management with the help of real time monitoring and control are also provided. Furthermore cost and time evaluation systems are analysed. Finally, contractual aspects related to construction by contract are investigated, for best development and application of models more appropriate for tunnelling-construction contracts. The work will be of interest to practising engineers, designers, consultants and students in mining, underground, tunnelling, transportation and construction engineering, as well as to foundation and geological engineers, urban planners/developers and architects.