This work bridges the gaps between mechanical spectroscopy, internal friction, relaxation phenomena in solids and the spectroscopic approach to the dissipation of mechanical energy in solids. A limited number of papers are selected from different fields in order to compare the analysis of similar relaxation phenomena occurring in various materials.
This report presents an overview of the chemical analysis of thermosets. Materials based on thermosets present the analyst with considerable challenges due to their complexity and the wide range of polymer types and additives available. This review sets out to present an introduction to the analytical techniques and methods that are used to characterise and carry out quality control work on thermosets, investigate the failure of thermosets products and to deformulate thermoset compounds. The review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject.
The first of many important works featured in CRC Press’ Metals and Alloys Encyclopedia Collection, the Encyclopedia of Iron, Steel, and Their Alloys covers all the fundamental, theoretical, and application-related aspects of the metallurgical science, engineering, and technology of iron, steel, and their alloys. This Five-Volume Set addresses topics such as extractive metallurgy, powder metallurgy and processing, physical metallurgy, production engineering, corrosion engineering, thermal processing, metalworking, welding, iron- and steelmaking, heat treating, rolling, casting, hot and cold forming, surface finishing and coating, crystallography, metallography, computational metallurgy, metal-matrix composites, intermetallics, nano- and micro-structured metals and alloys, nano- and micro-alloying effects, special steels, and mining. A valuable reference for materials scientists and engineers, chemists, manufacturers, miners, researchers, and students, this must-have encyclopedia: Provides extensive coverage of properties and recommended practices Includes a wealth of helpful charts, nomograms, and figures Contains cross referencing for quick and easy search Each entry is written by a subject-matter expert and reviewed by an international panel of renowned researchers from academia, government, and industry. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]
Electron microscopy is now a mainstay characterization tool for solid state physicists and chemists as well as materials scientists. Electron Microscopy and Analysis 2001 presents a useful snapshot of the latest developments in instrumentation, analysis techniques, and applications of electron and scanning probe microscopies. The book is ideal for materials scientists, solid state physicists and chemists, and researchers in these areas who want to keep abreast of the state of the art in the field.
Mössbauer spectroscopy is uniquely able to probe hyperfine interactions by looking at the short-range order of resonant atoms. Materials containing an appropriate isotope as one of their constituent atoms, such as iron or tin, are readily investigated. But even materials that do not contain Mössbauer-active atoms can be investigated if the probe atoms are incorporated in minor quantities (ca. 0.1 at.-%) to act as molecular-level indicators. These 35 papers collected here represent a state-of-the-art description of Mössbauer spectroscopy techniques applied to advanced materials. The topics covered comprise investigations of nanomaterials, nanoparticles, and quasicrystals, artificially structured materials as well as applications of Mössbauer spectroscopy in chemistry, mineralogy and metallurgy. The main aim of is the dissemination of information on research and recent developments of the method in materials science as obtained in leading Mössbauer laboratories.
Modal Analysis provides a detailed overview of the theory of analytical and experimental modal analysis and its applications. Modal Analysis is the processes of determining the inherent dynamic characteristics of any system and using them to formulate a mathematical model of the dynamic behavior of the system. In the past two decades it has become a major technological tool in the quest for determining, improving and optimizing dynamic characteristics of engineering structures. Its main application is in mechanical and aeronautical engineering, but it is also gaining widespread use in civil and structural engineering, biomechanical problems, space structures, acoustic instruments and nuclear engineering. - The only book to focus on the theory of modal analysis before discussing applications - A relatively new technique being utilized more and more in recent years which is now filtering through to undergraduate courses - Leading expert in the field
Dynamic Mechanical Analysis (DMA) is a powerful technique for understanding the viscoelastic properties of materials. It has become a powerful tool for chemists, polymer and material scientists, and engineers. Despite this, it often remains underutilized in the modern laboratory. Because of its high sensitivity to the presence of the glass transition, many users limit it to detecting glass transitions that can’t be seen by differential scanning calorimetry (DSC). This book presents a practical and straightforward approach to understanding how DMA works and what it measures. Starting with the concepts of stress and strain, the text takes the reader through stress–strain, creep, and thermomechanical analysis. DMA is discussed as both the instrument and fixtures as well as the techniques for measuring both thermoplastic and thermosetting behavior. This edition offers expanded chapters on these areas as well as frequency scanning and other application areas. To help the reader grasp the material, study questions have also been added. Endnotes have been expanded and updated. Features Reflects the latest DMA research and technical advances Includes case studies to demonstrate the use of DMA over a range of industrial problems Includes numerous references to help those with limited materials engineering background Demonstrates the power of DMA as a laboratory tool for analysis and testing
The 16th ICSMGE responds to the needs of the engineering and construction community, promoting dialog and exchange between academia and practice in various aspects of soil mechanics and geotechnical engineering. This is reflected in the central theme of the conference 'Geotechnology in Harmony with the Global Environment'. The proceedings of the conference are of great interest for geo-engineers and researchers in soil mechanics and geotechnical engineering. Volume 1 contains 5 plenary session lectures, the Terzaghi Oration, Heritage Lecture, and 3 papers presented in the major project session. Volumes 2, 3, and 4 contain papers with the following topics: Soil mechanics in general; Infrastructure and mobility; Environmental issues of geotechnical engineering; Enhancing natural disaster reduction systems; Professional practice and education. Volume 5 contains the report of practitioner/academic forum, 20 general reports, a summary of the sessions and workshops held during the conference.