Measuring and Controlling Interest Rate Risk

Measuring and Controlling Interest Rate Risk

Author: Frank J. Fabozzi

Publisher:

Published: 1996-08-15

Total Pages: 336

ISBN-13:

DOWNLOAD EBOOK

Fabozzi provides an explanation of concepts such as duration and convexivity, as well as more advanced topics such as probability distributions and regression analysis. He also gives keys to using derivatives to control interest rate risk


Measuring and Controlling Interest Rate and Credit Risk

Measuring and Controlling Interest Rate and Credit Risk

Author: Frank J. Fabozzi

Publisher: John Wiley & Sons

Published: 2003-09-10

Total Pages: 545

ISBN-13: 0471485918

DOWNLOAD EBOOK

Measuring and Controlling Interest Rate and Credit Risk provides keys to using derivatives to control interest rate risk and credit risk, and controlling interest rate risk in a mortgage-backed securities derivative portfolio. This book includes information on measuring yield curve risk, swaps and exchange-traded options, TC options and related products, and describes how to measure and control the interest rate of risk of a bond portfolio or trading position. Measuring and Controlling Interest Rate and Credit Risk is a systematic evaluation of how to measure and control the interest rate risk and credit risk of a bond portfolio or trading position, defining key points in the process of risk management as related to financial situations. The authors construct a verbal flow chart, defining and illustrating interest rate risk and credit risk in regards to valuation, probability distributions, forecasting yield volatility, correlation and regression analyses. Hedging instruments discussed include futures contracts, interest rate swaps, exchange traded options, OTC options, and credit derivatives. The text includes calculated examples and readers will learn how to measure and control the interest rate risk and credit risk of a bond portfolio or trading position. They will discover value at risk approaches, valuation, probability distributions, yield volatility, futures, interest rate swaps, exchange traded funds; and find in-depth, up-to-date information on measuring interest rate with derivatives, quantifying the results of positions, and hedging. Frank J. Fabozzi (New Hope, PA) is a financial consultant, the Editor of the Journal of Portfolio Management, and an Adjunct Professor of Finance at Yale University?s School of Management. Steven V. Mann (Columbia, SC) is Professor of Finance at the Moore School of Business, University of South Carolina. Moorad Choudhry (Surrey, UK) is a Vice President with JPMorgan Chase structured finance services in London. Moorad Choudhry (Surrey, England) is a senior Fellow at the Centre for Mathematical Trading and Finance, CASS Business School, London, and is Editor of the Journal of Bond Trading and Management. He has authored a number of books on fixed income analysis and the capital markets. Moorad began his City career with ABN Amro Hoare Govett Sterling Bonds Limited, where he worked as a gilt-edged market maker, and Hambros Bank Limited where he was a sterling proprietary trader. He is currently a vice-president in Structured Finance Services with JPMorgan Chase Bank in London.


A Primer on Managing Sovereign Debt-Portfolio Risks

A Primer on Managing Sovereign Debt-Portfolio Risks

Author: Thordur Jonasson

Publisher: International Monetary Fund

Published: 2018-04-06

Total Pages: 133

ISBN-13: 1484350545

DOWNLOAD EBOOK

This paper provides an overview of sovereign debt portfolio risks and discusses various liability management operations (LMOs) and instruments used by public debt managers to mitigate these risks. Debt management strategies analyzed in the context of helping reach debt portfolio targets and attain desired portfolio structures. Also, the paper outlines how LMOs could be integrated into a debt management strategy and serve as policy tools to reduce potential debt portfolio vulnerabilities. Further, the paper presents operational issues faced by debt managers, including the need to develop a risk management framework, interactions of debt management with fiscal policy, monetary policy, and financial stability, as well as efficient government bond markets.


Managing Interest Rate Risk

Managing Interest Rate Risk

Author: John J. Stephens

Publisher: John Wiley & Sons

Published: 2002-03-12

Total Pages: 208

ISBN-13:

DOWNLOAD EBOOK

This book tackles the subject of interest rate risk, a matter of key importance to all businesses, whether borrowing, investing, saving or trading.


Credit Risk Measurement

Credit Risk Measurement

Author: Anthony Saunders

Publisher: John Wiley & Sons

Published: 2002-10-06

Total Pages: 337

ISBN-13: 0471274763

DOWNLOAD EBOOK

The most cutting-edge read on the pricing, modeling, and management of credit risk available The rise of credit risk measurement and the credit derivatives market started in the early 1990s and has grown ever since. For many professionals, understanding credit risk measurement as a discipline is now more important than ever. Credit Risk Measurement, Second Edition has been fully revised to reflect the latest thinking on credit risk measurement and to provide credit risk professionals with a solid understanding of the alternative approaches to credit risk measurement. This readable guide discusses the latest pricing, modeling, and management techniques available for dealing with credit risk. New chapters highlight the latest generation of credit risk measurement models, including a popular class known as intensity-based models. Credit Risk Measurement, Second Edition also analyzes significant changes in banking regulations that are impacting credit risk measurement at financial institutions. With fresh insights and updated information on the world of credit risk measurement, this book is a must-read reference for all credit risk professionals. Anthony Saunders (New York, NY) is the John M. Schiff Professor of Finance and Chair of the Department of Finance at the Stern School of Business at New York University. He holds positions on the Board of Academic Consultants of the Federal Reserve Board of Governors as well as the Council of Research Advisors for the Federal National Mortgage Association. He is the editor of the Journal of Banking and Finance and the Journal of Financial Markets, Instruments and Institutions. Linda Allen (New York, NY) is Professor of Finance at Baruch College and Adjunct Professor of Finance at the Stern School of Business at New York University. She also is author of Capital Markets and Institutions: A Global View (Wiley: 0471130494). Over the years, financial professionals around the world have looked to the Wiley Finance series and its wide array of bestselling books for the knowledge, insights, and techniques that are essential to success in financial markets. As the pace of change in financial markets and instruments quickens, Wiley Finance continues to respond. With critically acclaimed books by leading thinkers on value investing, risk management, asset allocation, and many other critical subjects, the Wiley Finance series provides the financial community with information they want. Written to provide professionals and individuals with the most current thinking from the best minds in the industry, it is no wonder that the Wiley Finance series is the first and last stop for financial professionals looking to increase their financial expertise.


Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets

Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets

Author: Johan Hagenbjörk

Publisher: Linköping University Electronic Press

Published: 2019-12-09

Total Pages: 156

ISBN-13: 917929927X

DOWNLOAD EBOOK

The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.