Measurement of the [math Display

Measurement of the [math Display

Author:

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Electroweak production of the top quark is measured in pp collisions at \(\sqrt{s} = 7\) Tev, using a dataset collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 36 pb-1 inverse picobarns. With an event selection optimized for t-channel production, two complementary analyses are performed. The first one exploits the special angular properties of the signal, together with background estimates from data. The second approach uses a multivariate analysis technique to probe the compatibility with signal topology expected from electroweak top quark production. The combined measurement of the cross section is 83.6 ± 29.8 (stat.+syst.) ± 3.3 (lumi.) pb, consistent with the standard model expectation.


Top Quark Pair Production

Top Quark Pair Production

Author: Anna Christine Henrichs

Publisher: Springer Science & Business Media

Published: 2013-10-04

Total Pages: 231

ISBN-13: 3319014870

DOWNLOAD EBOOK

Before any kind of new physics discovery could be made at the LHC, a precise understanding and measurement of the Standard Model of particle physics' processes was necessary. The book provides an introduction to top quark production in the context of the Standard Model and presents two such precise measurements of the production of top quark pairs in proton-proton collisions at a center-of-mass energy of 7 TeV that were observed with the ATLAS Experiment at the LHC. The presented measurements focus on events with one charged lepton, missing transverse energy and jets. Using novel and advanced analysis techniques as well as a good understanding of the detector, they constitute the most precise measurements of the quantity at that time.


Measurement of the Single Top Quark Production Cross Section and

Measurement of the Single Top Quark Production Cross Section and

Author:

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

An updated measurement of the single top quark production cross section is presented using the full data set collected by the Collider Detector at Fermilab (CDF), corresponding to 9.5 fb-1 of integrated luminosity from proton-antiproton collisions at 1.96 TeV center-of-mass energy. The events selected contain an imbalance in the total transverse momentum, jets identified as containing b quarks, and no identified leptons. The sum of the s- and t-channel single top quark cross sections is measured to be 3.53-1.16+1.25 pb and a lower limit on the magnitude of the top-to-bottom quark coupling,


Measurement of the Single Top Quark Production Cross Section at $\sqrt {s}

Measurement of the Single Top Quark Production Cross Section at $\sqrt {s}

Author:

Publisher:

Published: 2011

Total Pages: 189

ISBN-13:

DOWNLOAD EBOOK

Within the standard model top quarks are predicted to be most often produced in pairs via the strong interaction. However they can also be produced singly through the weak interation. This is a rarer process with many experimental challenges. It is interesting because it provides a new window to search for evidence of physics beyond the standard model picture, such as a fourth generation of quarks or to search for insight into the Higgs Mechanism. Single top production also provides a direct way to calculate the CKM matrix element Vtb. This thesis presents new measurements for single top quark production in the s+t, s and t channels using 5.4 fb-1 of data collected at the DØ detector at Fermilab in Batavia, IL. The analysis was performed using Boosted decision trees to separate signal from background and Bayesian statistcs to calculate all the cross sections.


Measurement of the T-channel Single-top-quark Production Cross Section and of the

Measurement of the T-channel Single-top-quark Production Cross Section and of the

Author:

Publisher:

Published: 2014

Total Pages: 43

ISBN-13:

DOWNLOAD EBOOK

Measurements are presented of the t-channel single-top-quark production cross section in proton-proton collisions at √s = 8 TeV. The results are based on a data sample corresponding to an integrated luminosity of 19.7 fb−1 recorded with the CMS detector at the LHC. The cross section is measured inclusively, as well as separately for top (t) and antitop $ \left(\overline{\mathrm{t}}\right) $, in final states with a muon or an electron. The measured inclusive t-channel cross section is?t-ch. = 83.6 ± 2.3 (stat.) ± 7.4 (syst.) pb. The single t and $ \overline{\mathrm{t}} $ cross sections are measured to be?t-ch.(t) = 53.8 ± 1.5 (stat.) ± 4.4 (syst.) pb and?$_{t-ch.}$ $ \left(\overline{t}\right) $ = 27.6 ± 1.3 (stat.) ± 3.7 (syst.) pb, respectively. The measured ratio of cross sections is Rt-ch. =?t-ch.(t)/?t-ch. $ \left(\overline{\mathrm{t}}\right) $ = 1.95 ± 0.10 (stat.) ± 0.19 (syst.), in agreement with the standard model prediction. The modulus of the Cabibbo-Kobayashi-Maskawa matrix element Vtb is extracted and, in combination with a previous CMS result at √s = 7 TeV, a value.


Measurement of the Single Top Quark Production Cross Section at CDF.

Measurement of the Single Top Quark Production Cross Section at CDF.

Author:

Publisher:

Published: 2008

Total Pages: 7

ISBN-13:

DOWNLOAD EBOOK

We report a measurement of the single top quark production cross section in 2.2 fb−1 of p{bar p} collision data collected by the Collider Detector at Fermilab at √s = 1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2{sub -0.6}{sup +0.7}(stat+sys) pb, extract the CKM matrix element value.


First Measurement of the Running of the Top Quark Mass

First Measurement of the Running of the Top Quark Mass

Author: Matteo M. Defranchis

Publisher: Springer Nature

Published: 2022-01-03

Total Pages: 170

ISBN-13: 3030903761

DOWNLOAD EBOOK

In this thesis, the first measurement of the running of the top quark mass is presented. This is a fundamental quantum effect that had never been studied before. Any deviation from the expected behaviour can be interpreted as a hint of the presence of physics beyond the Standard Model. All relevant aspects of the analysis are extensively described and documented. This thesis also describes a simultaneous measurement of the inclusive top quark-antiquark production cross section and the top quark mass in the simulation. The measured cross section is also used to precisely determine the values of the top quark mass and the strong coupling constant by comparing to state-of-the-art theoretical predictions. All the theoretical and experimental aspects relevant to the results presented in this thesis are discussed in the initial chapters in a concise but complete way, which makes the material accessible to a wider audience.


Discovery of Single Top Quark Production

Discovery of Single Top Quark Production

Author: Dag Gillberg

Publisher: Springer Science & Business Media

Published: 2011-01-22

Total Pages: 149

ISBN-13: 1441977996

DOWNLOAD EBOOK

The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking—the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of single top quark production. It documents one of the flagship measurements of the D0 experiment, a collaboration of more than 600 physicists from around the world. It describes first observation of a physical process known as “single top quark production”, which had been sought for more than 10 years before its eventual discovery in 2009. Further, his thesis describes, in detail, the innovative approach Dr. Gillberg took to this analysis. Through the use of Boosted Decision Trees, a machine-learning technique, he observed the tiny single top signal within an otherwise overwhelming background. This Doctoral Thesis has been accepted by Simon Fraser University, Burnaby, BC, Canada.