The purpose of this volume is to gather the latest experimental results from the H1, ZEUS and HERMES collaborations and to capture new trends in HERA phenomenology. The presentations are by experts for experts, but are suitable for a mixed readership of both theoreticians and experimentalists. H1 members also cover ZEUS results and vice versa. This is the place where discrepancies between experimental data and theoretical predictions are pointed out and ventilated and where projects to be launched in the future are identified.
These proceedings present the most up-to-date status of deep inelastic scattering (DIS) physics. Topics such as structure function measurements and phenomenology, quantum chromodynamics (QCD) studies in DIS and photoproduction, spin physics and diffractive interactions are reviewed in detail, with emphasis on those studies that push the test of QCD and the Standard Model to the limits of their present range of validity, towards both the very high and the very low four-momentum transfers in leptonproton scattering.
On September 27 – October 3, 2008 the NATO Advanced Research Workshop (ARW) on progress in high-energy physics and nuclear safety was held in Yalta, Crimea (see: http://crimea.bitp.kiev.ua and http://arw.bitp.kiev.ua). Nearly 50 leading experts in high-energy and nuclear physics from Eastern and Western Europe as well as from North America participated at the Workshop. The topics of the ARW covered recent results of theoretical and experimental studies in high-energy physics, accelerator, detection and nuclear technologies, as well as problems of nuclear safety in high-energy experimentation and in nuclear - dustry. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments were among the topics of the ARW. An important aspect of the Workshop was the scienti?c collaboration between nuclear physicists from East and West, especially in the ?eld of nuclear safety. The present book contains a selection of invited talks presented at the ARW. The papers are grouped in two parts.
This volume focusses on four main topics: structure functions, tests of quantum chromodynamics, physics at the highest Q2 and p2T, and high energy scattering and diffraction. Comprehensive review articles on hadronic and photon structure, lepton-parton and parton-parton physics as well as future experimental opportunities are presented, together with a special lecture on HERA's legacy after the first decade of operation.
The 32nd International Conference on High Energy Physics belongs to the Rochester Conference Series, and is the most important international conference in 2004 on high energy physics. The proceedings provide a comprehensive review on the recent developments in experimental and theoretical particle physics. The latest results on Top, Higgs search, CP violation, neutrino mixing, pentaquarks, heavy quark mesons and baryons, search for new particles and new phenomena, String theory, Extra dimension, Black hole and Lattice calculation are discussed extensively. The topics covered include not only those of main interest to the high energy physics community, but also recent research and future plans. Contents: Neutrino Masses and MixingsQuark Matter and Heavy Ion CollisionsParticle Astrophysics and CosmologyElectroweak PhysicsQCD Hard InteractionsQCD Soft InteractionsComputational Quantum Field TheoryCP Violation, Rare Kaon Decay and CKMR&D for Future Accelerator and DetectorHadron Spectroscopy and ExoticsHeavy Quark Mesons and BaryonsBeyond the Standard ModelString Theory Readership: Experimental and theoretical physicists and graduate students in the fields of particle physics, nuclear physics, astrophysics and cosmology.Keywords:High Energy Physics;Particle Physics;Electroweak;QCD;Heavy Quark;Neutrino;Particle Astrophysics;Hadron Spectroscopy;CP Violation;Quark Matter;Future Accelerator
The production of heavy quarks in high-energy experiments offers a rich field to study, both experimentally and theoretically. Due to the additional quark mass, the description of these processes in the framework of perturbative QCD is much more demanding than it is for those involving only massless partons. In the last two decades, a large amount of precision data has been collected by the deep inelastic HERA experiment. In order to make full use of these data, a more precise theoretical description of charm quark production in deep inelastic scattering is needed. This work deals with the first calculation of fixed moments of the NNLO heavy flavor corrections to the proton structure function F2 in the limit of a small charm-quark mass. The correct treatment of these terms will allow not only a more precise analysis of the HERA data, but starting from there also a more precise determination of the parton distribution functions and the strong coupling constant, which is an essential input for LHC physics. The complexity of this calculation requires the application and development of technical and mathematical methods, which are also explained here in detail.
This book gathers the proceedings of The Hadron Collider Physics Symposia (HCP) 2005, and reviews the state-of-the-art in the key physics directions of experimental hadron collider research. Topics include QCD physics, precision electroweak physics, c-, b-, and t-quark physics, physics beyond the Standard Model, and heavy ion physics. The present volume serves as a reference for everyone working in the field of accelerator-based high-energy physics.
These proceedings consist of plenary rapporteur talks covering topics of major interest to the high energy physics community and parallel sessions papers which describe recent research results and future plans.
"The purpose of this volume is to gather the latest experiment results from the H1, ZEUS and HERMES collaborations and to capture new trends in HERA phenomenology. The presentations are by experts for experts, but are suitable for a mixed readership of both theoreticians and experimentalists. H1 members also cover ZEUS results and vice versa. This is the place where discrepancies between experimental data and theoretical predictions are pointed out and ventilated and where projects to be launched in the future are identified."--BOOK JACKET.