The second edition of a bestseller, this book presents the latest innovative research methods that help break new ground by applying patterns, reuse, and design science to research. The book relies on familiar patterns to provide the solid fundamentals of various research philosophies and techniques as touchstones that demonstrate how to innovate research methods. Filled with practical examples of applying patterns to IT research with an emphasis on reusing research activities to save time and money, this book describes design science research in relation to other information systems research paradigms such as positivist and interpretivist research.
This new edition of the methods and instrumentation used in the detection of ionizing radiation has been revised and updated to reflect recent advances. It covers modern engineering practice, provides useful design information and contains an up-to-date review of the literature.
Radiation Detection: Concepts, Methods, and Devices provides a modern overview of radiation detection devices and radiation measurement methods. The book topics have been selected on the basis of the authors’ many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment. This book is designed to give the reader more than a glimpse at radiation detection devices and a few packaged equations. Rather it seeks to provide an understanding that allows the reader to choose the appropriate detection technology for a particular application, to design detectors, and to competently perform radiation measurements. The authors describe assumptions used to derive frequently encountered equations used in radiation detection and measurement, thereby providing insight when and when not to apply the many approaches used in different aspects of radiation detection. Detailed in many of the chapters are specific aspects of radiation detectors, including comprehensive reviews of the historical development and current state of each topic. Such a review necessarily entails citations to many of the important discoveries, providing a resource to find quickly additional and more detailed information. This book generally has five main themes: Physics and Electrostatics needed to Design Radiation Detectors Properties and Design of Common Radiation Detectors Description and Modeling of the Different Types of Radiation Detectors Radiation Measurements and Subsequent Analysis Introductory Electronics Used for Radiation Detectors Topics covered include atomic and nuclear physics, radiation interactions, sources of radiation, and background radiation. Detector operation is addressed with chapters on radiation counting statistics, radiation source and detector effects, electrostatics for signal generation, solid-state and semiconductor physics, background radiations, and radiation counting and spectroscopy. Detectors for gamma-rays, charged-particles, and neutrons are detailed in chapters on gas-filled, scintillator, semiconductor, thermoluminescence and optically stimulated luminescence, photographic film, and a variety of other detection devices.
Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. The second edition is fully revised and provides the latest developments in detector technology and analyses software. Also, more material related to measurements in particle physics and a complete solutions manual have been added.
Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. It details the experimental techniques and instrumentation used in different detection systems in a very practical way without sacrificing the physics content. It provides useful formulae and explains methodologies to solve problems related to radiation measurements. With abundance of worked-out examples and end-of-chapter problems, this book enables the reader to understand the underlying physical principles and their applications. Detailed discussions on different detection media, such as gases, liquids, liquefied gases, semiconductors, and scintillators make this book an excellent source of information for students as well as professionals working in related fields. Chapters on statistics, data analysis techniques, software for data analysis, and data acquisition systems provide the reader with necessary skills to design and build practical systems and perform data analysis. - Covers the modern techniques involved in detection and measurement of radiation and the underlying physical principles - Illustrates theoretical and practical details with an abundance of practical, worked-out examples - Provides practice problems at the end of each chapter
Starting from basic principles, this book describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. The author, whose own contributions to these developments have been significant, explains the working principles of semiconductor radiation detectors in an intuitive way. Broad coverage is also given to electronic signal readout and to the subject of radiation damage.
Nuclear Radiation Detection, Measurements and Analysis covers various aspects of interactions of nuclear radiations like gamma and X-rays, charged particles like electrons, protons, alpha particles and other heavy ions and neutrons. The important types of detectors for these radiations are described with reference to the principle of operation, structure, working, key features etc. Different types of electronic modules which are helpful in processing and analysing the output pulses from such detectors are also described. The various techniques used for acquiring experimental data using the detectors and the associated electronic modules as well as for analysing the acquired data are discussed at length. Some specialized detector configurations and special techniques are also elaborated. Simple and informative illustrations help in understanding the various concepts presented in the text.
This book is intended for senior undergraduate and beginning graduate students in physics, nuclear engineering, health physics and nuclear medicine, and for specialized training courses for radiation protection personnel and environmental safety engineers.To keep the size of the book manageable, material has been selected to stress those detectors that are in widespread use. Attempts have also been made to emphasize alternatives available in approaching various measurement problems and to present the criteria by which a choice among these alternatives may be made.
​ This book will serve as the definitive source of detailed information on radiation, ionization, and detection in nuclear medicine. It opens by considering fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding. Subsequent chapters cover the full range of relevant topics, including the detection and measurement of radiation exposure (with detailed information on mathematical modelling); medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.
Presents the fundamental concepts of signal processing for all application areas of ionizing radiation This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: Describes both analog and digital techniques of signal processing Presents a complete compilation of digital pulse processing algorithms Extrapolates content from more than 700 references covering classic papers as well as those of today Demonstrates concepts with more than 340 original illustrations Signal Processing for Radiation Detectors provides researchers, engineers, and graduate students working in disciplines such as nuclear physics and engineering, environmental and biomedical engineering, and medical physics and radiological science, the knowledge to design their own systems, optimize available systems or to set up new experiments.