Mean Field Simulation for Monte Carlo Integration

Mean Field Simulation for Monte Carlo Integration

Author: Pierre Del Moral

Publisher: CRC Press

Published: 2013-05-20

Total Pages: 628

ISBN-13: 1466504056

DOWNLOAD EBOOK

In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Markov chain Monte Carlo models; bootstrapping methods; ensemble Kalman filters; and interacting particle filters. Mean Field Simulation for Monte Carlo Integration presents the first comprehensive and modern mathematical treatment of mean field particle simulation models and interdisciplinary research topics, including interacting jumps and McKean-Vlasov processes, sequential Monte Carlo methodologies, genetic particle algorithms, genealogical tree-based algorithms, and quantum and diffusion Monte Carlo methods. Along with covering refined convergence analysis on nonlinear Markov chain models, the author discusses applications related to parameter estimation in hidden Markov chain models, stochastic optimization, nonlinear filtering and multiple target tracking, stochastic optimization, calibration and uncertainty propagations in numerical codes, rare event simulation, financial mathematics, and free energy and quasi-invariant measures arising in computational physics and population biology. This book shows how mean field particle simulation has revolutionized the field of Monte Carlo integration and stochastic algorithms. It will help theoretical probability researchers, applied statisticians, biologists, statistical physicists, and computer scientists work better across their own disciplinary boundaries.


Monte Carlo and Quasi-Monte Carlo Methods 2012

Monte Carlo and Quasi-Monte Carlo Methods 2012

Author: Josef Dick

Publisher: Springer Science & Business Media

Published: 2013-12-05

Total Pages: 680

ISBN-13: 3642410952

DOWNLOAD EBOOK

This book represents the refereed proceedings of the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of New South Wales (Australia) in February 2012. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance, statistics and computer graphics.


Theoretical Aspects of Spatial-Temporal Modeling

Theoretical Aspects of Spatial-Temporal Modeling

Author: Gareth William Peters

Publisher: Springer

Published: 2015-12-24

Total Pages: 136

ISBN-13: 4431553363

DOWNLOAD EBOOK

This book provides a modern introductory tutorial on specialized theoretical aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter provides up-to-date coverage of particle association measures that underpin the theoretical properties of recently developed random set methods in space and time otherwise known as the class of probability hypothesis density framework (PHD filters). The second chapter gives an overview of recent advances in Monte Carlo methods for Bayesian filtering in high-dimensional spaces. In particular, the chapter explains how one may extend classical sequential Monte Carlo methods for filtering and static inference problems to high dimensions and big-data applications. The third chapter presents an overview of generalized families of processes that extend the class of Gaussian process models to heavy-tailed families known as alpha-stable processes. In particular, it covers aspects of characterization via the spectral measure of heavy-tailed distributions and then provides an overview of their applications in wireless communications channel modeling. The final chapter concludes with an overview of analysis for probabilistic spatial percolation methods that are relevant in the modeling of graphical networks and connectivity applications in sensor networks, which also incorporate stochastic geometry features.


Stochastic Processes

Stochastic Processes

Author: Pierre Del Moral

Publisher: CRC Press

Published: 2017-02-24

Total Pages: 866

ISBN-13: 1498701841

DOWNLOAD EBOOK

Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.


Stochastic Analysis for Gaussian Random Processes and Fields

Stochastic Analysis for Gaussian Random Processes and Fields

Author: Vidyadhar S. Mandrekar

Publisher: CRC Press

Published: 2015-06-23

Total Pages: 200

ISBN-13: 1498707823

DOWNLOAD EBOOK

Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs).The book begins with preliminary results on covariance and associated RKHS


Quantification of Uncertainty: Improving Efficiency and Technology

Quantification of Uncertainty: Improving Efficiency and Technology

Author: Marta D'Elia

Publisher: Springer Nature

Published: 2020-07-30

Total Pages: 290

ISBN-13: 3030487210

DOWNLOAD EBOOK

This book explores four guiding themes – reduced order modelling, high dimensional problems, efficient algorithms, and applications – by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book’s content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.


Cyclostationarity: Theory and Methods – IV

Cyclostationarity: Theory and Methods – IV

Author: Fakher Chaari

Publisher: Springer

Published: 2019-07-31

Total Pages: 234

ISBN-13: 3030225291

DOWNLOAD EBOOK

This book gathers contributions presented at the 10th Workshop on Cyclostationary Systems and Their Applications, held in Gródek nad Dunajcem, Poland in February 2017. It includes twelve interesting papers covering current topics related to both cyclostationary and general non stationary processes. Moreover, this book, which covers both theoretical and practical issues, offers a practice-oriented guide to the analysis of data sets with non-stationary behavior and a bridge between basic and applied research on nonstationary processes. It provides students, researchers and professionals with a timely guide on cyclostationary systems, nonstationary processes and relevant engineering applications.


Complex Sport Analytics

Complex Sport Analytics

Author: Felix Lebed

Publisher: Routledge

Published: 2017-05-12

Total Pages: 295

ISBN-13: 1317434757

DOWNLOAD EBOOK

This book is the first to combine principles from analytics, complex systems theory, multi-disciplinary diagnostics and sport performance analysis. It considers athletes, teams, and sport organizations in individual and team games as complex systems, and demonstrates how complexity studies can enrich analytics and give us a more sophisticated understanding of the causalities of winning and losing in sports. Part I introduces the basic categories of analytics and their uses in elite sport. Part II presents an original conception of sport analytics both as a complex of different kinds of processes and as a complexity-adapted view of human systems acting in sport performance and management. Part III considers the main principles of complex sport analytics, expanding the prism of complexity to include all levels of a sport organization from athletes, coaches and trainers to top decision makers, and suggests practical applications and simulations for cases of both individual and team sports. This is illuminating reading for any advanced student, researcher or practitioner working in sport analytics, performance analysis, coaching science or sport management.


Perfect Simulation

Perfect Simulation

Author: Mark L. Huber

Publisher: CRC Press

Published: 2016-01-20

Total Pages: 250

ISBN-13: 1482232456

DOWNLOAD EBOOK

Exact sampling, specifically coupling from the past (CFTP), allows users to sample exactly from the stationary distribution of a Markov chain. During its nearly 20 years of existence, exact sampling has evolved into perfect simulation, which enables high-dimensional simulation from interacting distributions.Perfect Simulation illustrates the applic


Dependence Modeling with Copulas

Dependence Modeling with Copulas

Author: Harry Joe

Publisher: CRC Press

Published: 2014-06-26

Total Pages: 479

ISBN-13: 1466583231

DOWNLOAD EBOOK

Dependence Modeling with Copulas covers the substantial advances that have taken place in the field during the last 15 years, including vine copula modeling of high-dimensional data. Vine copula models are constructed from a sequence of bivariate copulas. The book develops generalizations of vine copula models, including common and structured facto