Maximum Likelihood for Social Science

Maximum Likelihood for Social Science

Author: Michael D. Ward

Publisher: Cambridge University Press

Published: 2018-11-22

Total Pages: 327

ISBN-13: 1107185823

DOWNLOAD EBOOK

Practical, example-driven introduction to maximum likelihood for the social sciences. Emphasizes computation in R, model selection and interpretation.


Maximum Likelihood Estimation

Maximum Likelihood Estimation

Author: Scott R. Eliason

Publisher: SAGE

Published: 1993

Total Pages: 100

ISBN-13: 9780803941076

DOWNLOAD EBOOK

This is a short introduction to Maximum Likelihood (ML) Estimation. It provides a general modeling framework that utilizes the tools of ML methods to outline a flexible modeling strategy that accommodates cases from the simplest linear models (such as the normal error regression model) to the most complex nonlinear models linking endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, the author discusses what properties are desirable in an estimator, basic techniques for finding maximum likelihood solutions, the general form of the covariance matrix for ML estimates, the sampling distribution of ML estimators; the use of ML in the normal as well as other distributions, and some useful illustrations of likelihoods.


Unifying Political Methodology

Unifying Political Methodology

Author: Gary King

Publisher: University of Michigan Press

Published: 1998-06-24

Total Pages: 290

ISBN-13: 9780472085545

DOWNLOAD EBOOK

DIVArgues that likelihood theory is a unifying approach to statistical modeling in political science /div


Statistical Modeling and Inference for Social Science

Statistical Modeling and Inference for Social Science

Author: Sean Gailmard

Publisher: Cambridge University Press

Published: 2014-06-09

Total Pages: 393

ISBN-13: 1139991760

DOWNLOAD EBOOK

Written specifically for graduate students and practitioners beginning social science research, Statistical Modeling and Inference for Social Science covers the essential statistical tools, models and theories that make up the social scientist's toolkit. Assuming no prior knowledge of statistics, this textbook introduces students to probability theory, statistical inference and statistical modeling, and emphasizes the connection between statistical procedures and social science theory. Sean Gailmard develops core statistical theory as a set of tools to model and assess relationships between variables - the primary aim of social scientists - and demonstrates the ways in which social scientists express and test substantive theoretical arguments in various models. Chapter exercises guide students in applying concepts to data, extending their grasp of core theoretical concepts. Students will also gain the ability to create, read and critique statistical applications in their fields of interest.


Regression Diagnostics

Regression Diagnostics

Author: John Fox

Publisher: SAGE Publications

Published: 2019-12-09

Total Pages: 138

ISBN-13: 1544375212

DOWNLOAD EBOOK

Regression diagnostics are methods for determining whether a regression model that has been fit to data adequately represents the structure of the data. For example, if the model assumes a linear (straight-line) relationship between the response and an explanatory variable, is the assumption of linearity warranted? Regression diagnostics not only reveal deficiencies in a regression model that has been fit to data but in many instances may suggest how the model can be improved. The Second Edition of this bestselling volume by John Fox considers two important classes of regression models: the normal linear regression model (LM), in which the response variable is quantitative and assumed to have a normal distribution conditional on the values of the explanatory variables; and generalized linear models (GLMs) in which the conditional distribution of the response variable is a member of an exponential family. R code and data sets for examples within the text can be found on an accompanying website.


Statistical Inference as Severe Testing

Statistical Inference as Severe Testing

Author: Deborah G. Mayo

Publisher: Cambridge University Press

Published: 2018-09-20

Total Pages: 503

ISBN-13: 1108563309

DOWNLOAD EBOOK

Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.


Research Methodology in Social Science

Research Methodology in Social Science

Author: Arvind Kumar

Publisher: Sarup & Sons

Published: 2002

Total Pages: 376

ISBN-13: 9788176252782

DOWNLOAD EBOOK

Yet Research May Be Regarded As A Useful Form Of Activity. Research, In The Sense Of Development, Elaboration And Refinement Of Principles, Together With The Collection And Use Of Empirical Materials To Help In These Processes, Is One Of Die Highest Activities Of A University And One In Which All Its Professors Should Be Engaged. Research Need Not Be Thought Of As A Special Prerogative Of Young Men And Women Preparing Themselves For A Higher Degree. Nobody Needs The Permission Of A University To Do Research And Many Of The Great Scholars Did Not Any Research In The Ordinary Sense Of The Term. Yet They Succeeded In Contributing Significantly To The Existing Realms Of Knowledge. Research Is A Matter Of Realising A Question And Then Trying To Find An Answer. In Other Words, Research Means A Sort Of Investigation Describing The Fact That Some Problem Is Being Investigated To Shed For Generalization. Therefore, Research Is The Activity Of Solving Problem Which Adds New Knowledge And Developing Of Theory As Well As Gathering Of Evidence To Test Generalization.In View Of This, The Present Attempt Is Made To Describe The Different Aspects Of Research Generally Being Conducted By The Social Scientists And It Is Hoped That It Will Be Of Great Use For All Those Concerned With Social Research.


Regression Models for Categorical and Limited Dependent Variables

Regression Models for Categorical and Limited Dependent Variables

Author: J. Scott Long

Publisher: SAGE

Published: 1997-01-09

Total Pages: 334

ISBN-13: 9780803973749

DOWNLOAD EBOOK

Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.


The SAGE Handbook of Quantitative Methodology for the Social Sciences

The SAGE Handbook of Quantitative Methodology for the Social Sciences

Author: David Kaplan

Publisher: SAGE Publications

Published: 2004-06-21

Total Pages: 529

ISBN-13: 1483365875

DOWNLOAD EBOOK

Click ′Additional Materials′ for downloadable samples "The 24 chapters in this Handbook span a wide range of topics, presenting the latest quantitative developments in scaling theory, measurement, categorical data analysis, multilevel models, latent variable models, and foundational issues. Each chapter reviews the historical context for the topic and then describes current work, including illustrative examples where appropriate. The level of presentation throughout the book is detailed enough to convey genuine understanding without overwhelming the reader with technical material. Ample references are given for readers who wish to pursue topics in more detail. The book will appeal to both researchers who wish to update their knowledge of specific quantitative methods, and students who wish to have an integrated survey of state-of- the-art quantitative methods." —Roger E. Millsap, Arizona State University "This handbook discusses important methodological tools and topics in quantitative methodology in easy to understand language. It is an exhaustive review of past and recent advances in each topic combined with a detailed discussion of examples and graphical illustrations. It will be an essential reference for social science researchers as an introduction to methods and quantitative concepts of great use." —Irini Moustaki, London School of Economics, U.K. "David Kaplan and SAGE Publications are to be congratulated on the development of a new handbook on quantitative methods for the social sciences. The Handbook is more than a set of methodologies, it is a journey. This methodological journey allows the reader to experience scaling, tests and measurement, and statistical methodologies applied to categorical, multilevel, and latent variables. The journey concludes with a number of philosophical issues of interest to researchers in the social sciences. The new Handbook is a must purchase." —Neil H. Timm, University of Pittsburgh The SAGE Handbook of Quantitative Methodology for the Social Sciences is the definitive reference for teachers, students, and researchers of quantitative methods in the social sciences, as it provides a comprehensive overview of the major techniques used in the field. The contributors, top methodologists and researchers, have written about their areas of expertise in ways that convey the utility of their respective techniques, but, where appropriate, they also offer a fair critique of these techniques. Relevance to real-world problems in the social sciences is an essential ingredient of each chapter and makes this an invaluable resource. The handbook is divided into six sections: • Scaling • Testing and Measurement • Models for Categorical Data • Models for Multilevel Data • Models for Latent Variables • Foundational Issues These sections, comprising twenty-four chapters, address topics in scaling and measurement, advances in statistical modeling methodologies, and broad philosophical themes and foundational issues that transcend many of the quantitative methodologies covered in the book. The Handbook is indispensable to the teaching, study, and research of quantitative methods and will enable readers to develop a level of understanding of statistical techniques commensurate with the most recent, state-of-the-art, theoretical developments in the field. It provides the foundations for quantitative research, with cutting-edge insights on the effectiveness of each method, depending on the data and distinct research situation.