Dictionary of Scientific Principles presents a unique and timeless collection of (almost) all known rules or laws commonly called principles, identified throughout the history of scientific development, their definition, and use. Exploring a broad range of disciplines, the book first lists more than 2,000 principles organized in a standard alphabetical order, then provides a list of subject headings for which related principles are identified. A staple addition to every library, the dictionary will also be of interest to scientists and general readers.
This Dictionary presents a broad range of topics relevant in present-day global bioethics. With more than 500 entries, this dictionary covers organizations working in the field of global bioethics, international documents concerning bioethics, personalities that have played a role in the development of global bioethics, as well as specific topics in the field.The book is not only useful for students and professionals in global health activities, but can also serve as a basic tool that explains relevant ethical notions and terms. The dictionary furthers the ideals of cosmopolitanism: solidarity, equality, respect for difference and concern with what human beings- and specifically patients - have in common, regardless of their backgrounds, hometowns, religions, gender, etc. Global problems such as pandemic diseases, disasters, lack of care and medication, homelessness and displacement call for global responses.This book demonstrates that a moral vision of global health is necessary and it helps to quickly understand the basic ideas of global bioethics.
Methods of solution for partial differential equations (PDEs) used in mathematics, science, and engineering are clarified in this self-contained source. The reader will learn how to use PDEs to predict system behaviour from an initial state of the system and from external influences, and enhance the success of endeavours involving reasonably smooth, predictable changes of measurable quantities. This text enables the reader to not only find solutions of many PDEs, but also to interpret and use these solutions. It offers 6000 exercises ranging from routine to challenging. The palatable, motivated proofs enhance understanding and retention of the material. Topics not usually found in books at this level include but examined in this text: the application of linear and nonlinear first-order PDEs to the evolution of population densities and to traffic shocks convergence of numerical solutions of PDEs and implementation on a computer convergence of Laplace series on spheres quantum mechanics of the hydrogen atom solving PDEs on manifolds The text requires some knowledge of calculus but none on differential equations or linear algebra.
This book collects papers from the 8th Conference on Non-Integer Order Calculus and Its Applications that have been held on September 20-21, 2016 in Zakopane, Poland. The preceding two conferences were held in Szczecin, Poland in 2015, and in Opole, Poland, in 2014. This conference provides a platform for academic exchange on the theory and application of fractional calculus between domestic and international universities, research institutes, corporate experts and scholars. The Proceedings of the 8th Conference on Non-Integer Order Calculus and Its Applications 2016 brings together rigorously reviewed contributions from leading international experts. The included papers cover novel various important aspects of mathematical foundations of fractional calculus, modeling and control of fractional systems as well as controllability, detectability, observability and stability problems for this systems.
Suitable for both senior undergraduate and graduate students, this is a self-contained book dealing with the classical theory of the partial differential equations through a modern approach; requiring minimal previous knowledge. It represents the solutions to three important equations of mathematical physics – Laplace and Poisson equations, Heat or diffusion equation, and wave equations in one and more space dimensions. Keen readers will benefit from more advanced topics and many references cited at the end of each chapter. In addition, the book covers advanced topics such as Conservation Laws and Hamilton-Jacobi Equation. Numerous real-life applications are interspersed throughout the book to retain readers' interest.
Partial Differential Equations: Analytical Methods and Applications covers all the basic topics of a Partial Differential Equations (PDE) course for undergraduate students or a beginners’ course for graduate students. It provides qualitative physical explanation of mathematical results while maintaining the expected level of it rigor. This text introduces and promotes practice of necessary problem-solving skills. The presentation is concise and friendly to the reader. The "teaching-by-examples" approach provides numerous carefully chosen examples that guide step-by-step learning of concepts and techniques. Fourier series, Sturm-Liouville problem, Fourier transform, and Laplace transform are included. The book’s level of presentation and structure is well suited for use in engineering, physics and applied mathematics courses. Highlights: Offers a complete first course on PDEs The text’s flexible structure promotes varied syllabi for courses Written with a teach-by-example approach which offers numerous examples and applications Includes additional topics such as the Sturm-Liouville problem, Fourier and Laplace transforms, and special functions The text’s graphical material makes excellent use of modern software packages Features numerous examples and applications which are suitable for readers studying the subject remotely or independently