Matplotlib 2.x By Example

Matplotlib 2.x By Example

Author: Allen Yu

Publisher: Packt Publishing Ltd

Published: 2017-08-28

Total Pages: 328

ISBN-13: 1788292138

DOWNLOAD EBOOK

Unlock deeper insights into visualization in form of 2D and 3D graphs using Matplotlib 2.x About This Book Create and customize live graphs, by adding style, color, font to make appealing graphs. A complete guide with insightful use cases and examples to perform data visualizations with Matplotlib's extensive toolkits. Create timestamp data visualizations on 2D and 3D graphs in form of plots, histogram, bar charts, scatterplots and more. Who This Book Is For This book is for anyone interested in data visualization, to get insights from big data with Python and Matplotlib 2.x. With this book you will be able to extend your knowledge and learn how to use python code in order to visualize your data with Matplotlib. Basic knowledge of Python is expected. What You Will Learn Familiarize with the latest features in Matplotlib 2.x Create data visualizations on 2D and 3D charts in the form of bar charts, bubble charts, heat maps, histograms, scatter plots, stacked area charts, swarm plots and many more. Make clear and appealing figures for scientific publications. Create interactive charts and animation. Extend the functionalities of Matplotlib with third-party packages, such as Basemap, GeoPandas, Mplot3d, Pandas, Scikit-learn, and Seaborn. Design intuitive infographics for effective storytelling. In Detail Big data analytics are driving innovations in scientific research, digital marketing, policy-making and much more. Matplotlib offers simple but powerful plotting interface, versatile plot types and robust customization. Matplotlib 2.x By Example illustrates the methods and applications of various plot types through real world examples. It begins by giving readers the basic know-how on how to create and customize plots by Matplotlib. It further covers how to plot different types of economic data in the form of 2D and 3D graphs, which give insights from a deluge of data from public repositories, such as Quandl Finance. You will learn to visualize geographical data on maps and implement interactive charts. By the end of this book, you will become well versed with Matplotlib in your day-to-day work to perform advanced data visualization. This book will guide you to prepare high quality figures for manuscripts and presentations. You will learn to create intuitive info-graphics and reshaping your message crisply understandable. Style and approach Step by step comprehensive guide filled with real world examples.


Python Data Science Handbook

Python Data Science Handbook

Author: Jake VanderPlas

Publisher: "O'Reilly Media, Inc."

Published: 2016-11-21

Total Pages: 609

ISBN-13: 1491912138

DOWNLOAD EBOOK

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms


Matplotlib 2. X by Example

Matplotlib 2. X by Example

Author: Allen Yu

Publisher:

Published: 2017-08-28

Total Pages: 334

ISBN-13: 9781788295260

DOWNLOAD EBOOK

Unlock deeper insights into visualization in form of 2D and 3D graphs using Matplotlib 2.xAbout This Book* Create and customize live graphs, by adding style, color, font to make appealing graphs.* A complete guide with insightful use cases and examples to perform data visualizations with Matplotlib's extensive toolkits.* Create timestamp data visualizations on 2D and 3D graphs in form of plots, histogram, bar charts, scatterplots and more.Who This Book Is ForThis book is for anyone interested in data visualization, to get insights from big data with Python and Matplotlib 2.x. With this book you will be able to extend your knowledge and learn how to use python code in order to visualize your data with Matplotlib. Basic knowledge of Python is expected.What You Will Learn* Familiarize with the latest features in Matplotlib 2.x* Create data visualizations on 2D and 3D charts in the form of bar charts, bubble charts, heat maps, histograms, scatter plots, stacked area charts, swarm plots and many more.* Make clear and appealing figures for scientific publications.* Create interactive charts and animation.* Extend the functionalities of Matplotlib with third-party packages, such as Basemap, GeoPandas, Mplot3d, Pandas, Scikit-learn, and Seaborn.* Design intuitive infographics for effective storytelling.In DetailBig data analytics are driving innovations in scientific research, digital marketing, policy-making and much more. Matplotlib offers simple but powerful plotting interface, versatile plot types and robust customization.Matplotlib 2.x By Example illustrates the methods and applications of various plot types through real world examples.It begins by giving readers the basic know-how on how to create and customize plots by Matplotlib. It further covers how to plot different types of economic data in the form of 2D and 3D graphs, which give insights from a deluge of data from public repositories, such as Quandl Finance. You will learn to visualize geographical data on maps and implement interactive charts.By the end of this book, you will become well versed with Matplotlib in your day-to-day work to perform advanced data visualization. This book will guide you to prepare high quality figures for manuscripts and presentations. You will learn to create intuitive info-graphics and reshaping your message crisply understandable.Style and approachStep by step comprehensive guide filled with real world examples.


Mastering Matplotlib 2.x

Mastering Matplotlib 2.x

Author: Benjamin Walter Keller

Publisher: Packt Publishing Ltd

Published: 2018-11-29

Total Pages: 207

ISBN-13: 1789618177

DOWNLOAD EBOOK

Understand and build beautiful and advanced plots with Matplotlib and Python Key FeaturesPractical guide with hands-on examples to design interactive plotsAdvanced techniques to constructing complex plotsExplore 3D plotting and visualization using Jupyter NotebookBook Description In this book, you’ll get hands-on with customizing your data plots with the help of Matplotlib. You’ll start with customizing plots, making a handful of special-purpose plots, and building 3D plots. You’ll explore non-trivial layouts, Pylab customization, and more about tile configuration. You’ll be able to add text, put lines in plots, and also handle polygons, shapes, and annotations. Non-Cartesian and vector plots are exciting to construct, and you’ll explore them further in this book. You’ll delve into niche plots and visualize ordinal and tabular data. In this book, you’ll be exploring 3D plotting, one of the best features when it comes to 3D data visualization, along with Jupyter Notebook, widgets, and creating movies for enhanced data representation. Geospatial plotting will also be explored. Finally, you’ll learn how to create interactive plots with the help of Jupyter. Learn expert techniques for effective data visualization using Matplotlib 3 and Python with our latest offering -- Matplotlib 3.0 Cookbook What you will learnDeal with non-trivial and unusual plotsUnderstanding Basemap methodsCustomize and represent data in 3D Construct Non-Cartesian and vector plotsDesign interactive plots using Jupyter NotebookMake movies for enhanced data representationWho this book is for This book is aimed at individuals who want to explore data visualization techniques. A basic knowledge of Matplotlib and Python is required.


A Primer on Scientific Programming with Python

A Primer on Scientific Programming with Python

Author: Hans Petter Langtangen

Publisher: Springer

Published: 2016-07-28

Total Pages: 942

ISBN-13: 3662498871

DOWNLOAD EBOOK

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015


Numerical Python

Numerical Python

Author: Robert Johansson

Publisher: Apress

Published: 2018-12-24

Total Pages: 709

ISBN-13: 1484242467

DOWNLOAD EBOOK

Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. What You'll Learn Work with vectors and matrices using NumPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Review statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its related ecosystem for numerical computing.


Author:

Publisher: Cengage Learning

Published:

Total Pages: 978

ISBN-13: 0357684583

DOWNLOAD EBOOK


Python for Scientists

Python for Scientists

Author: John M. Stewart

Publisher: Cambridge University Press

Published: 2017-07-20

Total Pages: 272

ISBN-13: 1316641236

DOWNLOAD EBOOK

Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.


Python and Matplotlib Essentials for Scientists and Engineers

Python and Matplotlib Essentials for Scientists and Engineers

Author: Matt A Wood

Publisher: Morgan & Claypool Publishers

Published: 2015-06-01

Total Pages: 150

ISBN-13: 1627056203

DOWNLOAD EBOOK

This book provides an introduction to the core features of the Python programming language and Matplotlib plotting routings for scientists and engineers (or students of either discipline) who want to use PythonTM to analyse data, simulate physical processes, and render publication-quality plots. No previous programming experience is needed before reading the first page. Readers will learn the core features of the Python programming language in under a day. They will be able to immediately use Python to implement codes that solve their own problems and make beautiful plots and animations. Python code is extremely fast to prototype, allowing users to achieve results quickly and accurately. The examples within the book are available for download at http://pythonessentials.com. Python and Matplotlib Essentials for Scientists and Engineers is accessible for motivated high-school students, but will likely be most useful for undergraduate and graduate students as well as working professionals who have some background with the basic mathematical concepts. This book is intended for technical people who want to get things done.


Numerical Methods in Chemical Engineering Using Python® and Simulink®

Numerical Methods in Chemical Engineering Using Python® and Simulink®

Author: Nayef Ghasem

Publisher: CRC Press

Published: 2023-07-17

Total Pages: 371

ISBN-13: 1000907325

DOWNLOAD EBOOK

Numerical methods are vital to the practice of chemical engineering, allowing for the solution of real-world problems. Written in a concise and practical format, this textbook introduces readers to the numerical methods required in the discipline of chemical engineering and enables them to validate their solutions using both Python and Simulink. Introduces numerical methods, followed by the solution of linear and nonlinear algebraic equations. Deals with the numerical integration of a definite function and solves initial and boundary value ordinary differential equations with different orders. Weaves in examples of various numerical methods and validates solutions to each with Python and Simulink graphical programming. Features appendices on how to use Python and Simulink. Aimed at advanced undergraduate and graduate chemical engineering students, as well as practicing chemical engineers, this textbook offers a guide to the use of two of the most widely used programs in the discipline. The textbook features numerous video lectures of applications and a solutions manual for qualifying instructors.