Critically acclaimed and commercially successful, this resource is packed with useful information and instruction. Features proven teaching techniques, games, and more. Suitable for parents of children from preschool to age 10. 2006 edition.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
With a focus on children's mathematical thinking, this second edition adds new material on the mathematical principles underlying children's strategies, a new online video that illustrates student teacher interaction, and examines the relationship between CGI and the Common Core State Standards for Mathematics.
Sherri Messersmith’s successful hardcover franchise is expanded with the new softcover P.O.W.E.R. series. The conversational writing style, practical applications, innovative student resources and student friendly walk through of examples that users of the hard cover books noted and appreciated are also found in the pages of the P.O.W.E.R. series. The P.O.W.E.R. Framework What makes P.O.W.E.R. a unique tool for the classroom? A major challenge in developmental courses is that students at this level struggle with basic study skills and habits. Maybe this is one of their first college courses or perhaps they are adults returning to school after a long absence. Either way, many of the individuals taking this course don’t know how to be good students. Instructors often don’t have the time, the resources or the expertise to teach success skills AND the math concepts. The new team of Messersmith, Perez and Feldman offer a scientifically based approach to meet this challenge. The P.O.W.E.R. Learning Framework was developed by successful author, psychologist, student success instructor and researcher, Bob Feldman. It is a method of accomplishing any task using five simple and consistent steps. Prepare. Organize. Work. Evaluate. Rethink. This framework is integrated at every level of the text to help students successfully learn math concepts while at the same time developing habits that will serve them well throughout their college careers and in their daily lives. The Math Mastering Concepts--With the textbook and Connect Math hosted by ALEKS, students can practice and master their understanding of algebraic concepts. Messersmith is rigorous enough to prepare students for the next level yet easy to read and understand. The exposition is written as if a professor is teaching in a lecture to be more accessible to students. The language is mathematically sound yet easy enough for students to understand.
Teachers have the responsibility of helping all of their students construct the disposition and knowledge needed to live successfully in a complex and rapidly changing world. To meet the challenges of the 21st century, students will especially need mathematical power: a positive disposition toward mathematics (curiosity and self confidence), facility with the processes of mathematical inquiry (problem solving, reasoning and communicating), and well connected mathematical knowledge (an understanding of mathematical concepts, procedures and formulas). This guide seeks to help teachers achieve the capability to foster children's mathematical power - the ability to excite them about mathematics, help them see that it makes sense, and enable them to harness its might for solving everyday and extraordinary problems. The investigative approach attempts to foster mathematical power by making mathematics instruction process-based, understandable or relevant to the everyday life of students. Past efforts to reform mathematics instruction have focused on only one or two of these aims, whereas the investigative approach accomplishes all three. By teaching content in a purposeful context, an inquiry-based fashion, and a meaningful manner, this approach promotes chilren's mathematical learning in an interesting, thought-provoking and comprehensible way. This teaching guide is designed to help teachers appreciate the need for the investigative approach and to provide practical advice on how to make this approach happen in the classroom. It not only dispenses information, but also serves as a catalyst for exploring, conjecturing about, discussing and contemplating the teaching and learning of mathematics.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
Use the powerful strategies of play and storytelling to help young children develop their "math brains." This easy-to-use resource includes fun activities, routines, and games inspired by children's books that challenge children to recognize and think more logically about the math all around them.
In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.
In Powerful Learning, Linda Darling-Hammond and an impressive list of co-authors offer a clear, comprehensive, and engaging exploration of the most effective classroom practices. They review, in practical terms, teaching strategies that generate meaningful K–2 student understanding, and occur both within the classroom walls and beyond. The book includes rich stories, as well as online videos of innovative classrooms and schools, that show how students who are taught well are able to think critically, employ flexible problem-solving, and apply learned skills and knowledge to new situations.