Multi-Objective Optimization Problems

Multi-Objective Optimization Problems

Author: Fran Sérgio Lobato

Publisher: Springer

Published: 2017-07-03

Total Pages: 170

ISBN-13: 3319585657

DOWNLOAD EBOOK

This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.


Theory of Multiobjective Optimization

Theory of Multiobjective Optimization

Author: Yoshikazu Sawaragi

Publisher: Elsevier

Published: 1985-09-19

Total Pages: 311

ISBN-13: 0080958664

DOWNLOAD EBOOK

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression. - Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering


Multiobjective Optimization

Multiobjective Optimization

Author: Yann Collette

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 290

ISBN-13: 3662088835

DOWNLOAD EBOOK

This text offers many multiobjective optimization methods accompanied by analytical examples, and it treats problems not only in engineering but also operations research and management. It explains how to choose the best method to solve a problem and uses three primary application examples: optimization of the numerical simulation of an industrial process; sizing of a telecommunication network; and decision-aid tools for the sorting of bids.


Nonlinear Multiobjective Optimization

Nonlinear Multiobjective Optimization

Author: Kaisa Miettinen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 304

ISBN-13: 1461555639

DOWNLOAD EBOOK

Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.


Multiobjective Optimization

Multiobjective Optimization

Author: Jürgen Branke

Publisher: Springer

Published: 2008-10-18

Total Pages: 481

ISBN-13: 3540889086

DOWNLOAD EBOOK

Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.


Search Methodologies

Search Methodologies

Author: Edmund K. Burke

Publisher: Springer Science & Business Media

Published: 2013-10-18

Total Pages: 715

ISBN-13: 1461469406

DOWNLOAD EBOOK

The first edition of Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques was originally put together to offer a basic introduction to the various search and optimization techniques that students might need to use during their research, and this new edition continues this tradition. Search Methodologies has been expanded and brought completely up to date, including new chapters covering scatter search, GRASP, and very large neighborhood search. The chapter authors are drawn from across Computer Science and Operations Research and include some of the world’s leading authorities in their field. The book provides useful guidelines for implementing the methods and frameworks described and offers valuable tutorials to students and researchers in the field. “As I embarked on the pleasant journey of reading through the chapters of this book, I became convinced that this is one of the best sources of introductory material on the search methodologies topic to be found. The book’s subtitle, “Introductory Tutorials in Optimization and Decision Support Techniques”, aptly describes its aim, and the editors and contributors to this volume have achieved this aim with remarkable success. The chapters in this book are exemplary in giving useful guidelines for implementing the methods and frameworks described.” Fred Glover, Leeds School of Business, University of Colorado Boulder, USA “[The book] aims to present a series of well written tutorials by the leading experts in their fields. Moreover, it does this by covering practically the whole possible range of topics in the discipline. It enables students and practitioners to study and appreciate the beauty and the power of some of the computational search techniques that are able to effectively navigate through search spaces that are sometimes inconceivably large. I am convinced that this second edition will build on the success of the first edition and that it will prove to be just as popular.” Jacek Blazewicz, Institute of Computing Science, Poznan University of Technology and Institute of Bioorganic Chemistry, Polish Academy of Sciences


Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms

Author: Kalyanmoy Deb

Publisher: John Wiley & Sons

Published: 2001-07-05

Total Pages: 540

ISBN-13: 9780471873396

DOWNLOAD EBOOK

Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.


Recent Advances and Historical Development of Vector Optimization

Recent Advances and Historical Development of Vector Optimization

Author: Johannes Jahn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 409

ISBN-13: 3642466184

DOWNLOAD EBOOK

In vector optimization one investigates optimization problems in an abstract setting which have a not necessarily real-valued objective function. This scientific discipline is closely related to multi-objective optimization and multi-criteria decision making. This book contains refereed contributions to the "International Conference on Vector Optimization" held at the Technical University of Darmstadt from August 4-7, 1986. This meeting was an interdisciplinary forum devoted to new results in the theory, to applications as well as to the solution of vector optimization problems which are relevant in practice. Because of the great variety of topics covered by the contributions, the 25 articles of this volume are organized in different sections: Historical retrospect, mathematical theory, goal setting and decision making, engineering applications, and related topics. The papers of the invited State-of-the-Art Tutorials given by Professors J.M. Borwein, H. Eschenauer, W. Stadler and P.L. Yu are also included.


Multi-Objective Optimization

Multi-Objective Optimization

Author: Jyotsna K. Mandal

Publisher: Springer

Published: 2018-08-18

Total Pages: 326

ISBN-13: 9811314713

DOWNLOAD EBOOK

This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems.