Mathematics in Western Culture

Mathematics in Western Culture

Author: Morris Kline

Publisher: Oxford University Press

Published: 1964-12-31

Total Pages: 513

ISBN-13: 0195345452

DOWNLOAD EBOOK

This book gives a remarkably fine account of the influences mathematics has exerted on the development of philosophy, the physical sciences, religion, and the arts in Western life.


Mathematics as a Cultural System

Mathematics as a Cultural System

Author: Raymond L. Wilder

Publisher: Elsevier

Published: 2014-05-20

Total Pages: 195

ISBN-13: 1483100618

DOWNLOAD EBOOK

Mathematics as a Cultural System discusses the relationship between mathematics and culture. The book is comprised of eight chapters discussing topics that support the concept of mathematics as a cultural system. Chapter I deals with the nature of culture and cultural systems, while Chapter 2 provides examples of cultural patterns observable in the evolution of mechanics. Chapter III treats historical episodes as a laboratory for the illustration of patterns and forces that have been operative in cultural change. Chapter IV covers hereditary stress, and Chapter V discusses consolidation as a force and process. Chapter VI talks about the singularities in the evolution of mechanics, while Chapter 7 deals with the laws governing the evolution of mathematics. Chapter VIII tackles the role and future of mathematics. The book will be of great interest to readers who are curious about how mathematics relates to culture.


Mathematics: A Concise History and Philosophy

Mathematics: A Concise History and Philosophy

Author: W.S. Anglin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 253

ISBN-13: 1461208750

DOWNLOAD EBOOK

This is a concise introductory textbook for a one-semester (40-class) course in the history and philosophy of mathematics. It is written for mathemat ics majors, philosophy students, history of science students, and (future) secondary school mathematics teachers. The only prerequisite is a solid command of precalculus mathematics. On the one hand, this book is designed to help mathematics majors ac quire a philosophical and cultural understanding of their subject by means of doing actual mathematical problems from different eras. On the other hand, it is designed to help philosophy, history, and education students come to a deeper understanding of the mathematical side of culture by means of writing short essays. The way I myself teach the material, stu dents are given a choice between mathematical assignments, and more his torical or philosophical assignments. (Some sample assignments and tests are found in an appendix to this book. ) This book differs from standard textbooks in several ways. First, it is shorter, and thus more accessible to students who have trouble coping with vast amounts of reading. Second, there are many detailed explanations of the important mathematical procedures actually used by famous mathe maticians, giving more mathematically talented students a greater oppor tunity to learn the history and philosophy by way of problem solving.


Cultural Foundations of Mathematics

Cultural Foundations of Mathematics

Author: C. K. Raju

Publisher: Pearson Education India

Published: 2007

Total Pages: 536

ISBN-13: 9788131708712

DOWNLOAD EBOOK

The Volume Examines, In Depth, The Implications Of Indian History And Philosophy For Contemporary Mathematics And Science. The Conclusions Challenge Current Formal Mathematics And Its Basis In The Western Dogma That Deduction Is Infallible (Or That It Is Less Fallible Than Induction). The Development Of The Calculus In India, Over A Thousand Years, Is Exhaustively Documented In This Volume, Along With Novel Insights, And Is Related To The Key Sources Of Wealth-Monsoon-Dependent Agriculture And Navigation Required For Overseas Trade - And The Corresponding Requirement Of Timekeeping. Refecting The Usual Double Standard Of Evidence Used To Construct Eurocentric History, A Single, New Standard Of Evidence For Transmissions Is Proposed. Using This, It Is Pointed Out That Jesuits In Cochin, Following The Toledo Model Of Translation, Had Long-Term Opportunity To Transmit Indian Calculus Texts To Europe. The European Navigational Problem Of Determining Latitude, Longitude, And Loxodromes, And The 1582 Gregorian Calendar-Reform, Provided Ample Motivation. The Mathematics In These Earlier Indian Texts Suddenly Starts Appearing In European Works From The Mid-16Th Century Onwards, Providing Compelling Circumstantial Evidence. While The Calculus In India Had Valid Pramana, This Differed From Western Notions Of Proof, And The Indian (Algorismus) Notion Of Number Differed From The European (Abacus) Notion. Hence, Like Their Earlier Difficulties With The Algorismus, Europeans Had Difficulties In Understanding The Calculus, Which, Like Computer Technology, Enhanced The Ability To Calculate, Albeit In A Way Regarded As Epistemologically Insecure. Present-Day Difficulties In Learning Mathematics Are Related, Via Phylogeny Is Ontogeny , To These Historical Difficulties In Assimilating Imported Mathematics. An Appendix Takes Up Further Contemporary Implications Of The New Philosophy Of Mathematics For The Extension Of The Calculus, Which Is Needed To Handle The Infinities Arising In The Study Of Shock Waves And The Renormalization Problem Of Quantum Field Theory.


What Is Mathematics, Really?

What Is Mathematics, Really?

Author: Reuben Hersh

Publisher: Oxford University Press

Published: 1997-08-21

Total Pages: 368

ISBN-13: 0198027362

DOWNLOAD EBOOK

Most philosophers of mathematics treat it as isolated, timeless, ahistorical, inhuman. Reuben Hersh argues the contrary, that mathematics must be understood as a human activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a social context. Hersh pulls the screen back to reveal mathematics as seen by professionals, debunking many mathematical myths, and demonstrating how the "humanist" idea of the nature of mathematics more closely resembles how mathematicians actually work. At the heart of his book is a fascinating historical account of the mainstream of philosophy--ranging from Pythagoras, Descartes, and Spinoza, to Bertrand Russell, David Hilbert, and Rudolph Carnap--followed by the mavericks who saw mathematics as a human artifact, including Aristotle, Locke, Hume, Mill, and Lakatos. What is Mathematics, Really? reflects an insider's view of mathematical life, and will be hotly debated by anyone with an interest in mathematics or the philosophy of science.


Mathematics and Art

Mathematics and Art

Author: Lynn Gamwell

Publisher: Princeton University Press

Published: 2016

Total Pages: 576

ISBN-13: 0691165289

DOWNLOAD EBOOK

This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell's comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians' search for the foundations of their science, such as David Hilbert's conception of mathematics as an arrangement of meaning-free signs, as well as artists' search for the essence of their craft, such as Aleksandr Rodchenko's monochrome paintings. She shows that self-reflection is inherent to the practice of both modern mathematics and art, and that this introspection points to a deep resonance between the two fields: Kurt Gödel posed questions about the nature of mathematics in the language of mathematics and Jasper Johns asked "What is art?" in the vocabulary of art. Throughout, Gamwell describes the personalities and cultural environments of a multitude of mathematicians and artists, from Gottlob Frege and Benoît Mandelbrot to Max Bill and Xu Bing. Mathematics and Art demonstrates how mathematical ideas are embodied in the visual arts and will enlighten all who are interested in the complex intellectual pursuits, personalities, and cultural settings that connect these vast disciplines.


Mathematics Across Cultures

Mathematics Across Cultures

Author: Helaine Selin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 489

ISBN-13: 9401143013

DOWNLOAD EBOOK

Mathematics Across Cultures: A History of Non-Western Mathematics consists of essays dealing with the mathematical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Inca, Egyptian, and African mathematics, among others, the book includes essays on Rationality, Logic and Mathematics, and the transfer of knowledge from East to West. The essays address the connections between science and culture and relate the mathematical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.


5000 Years of Geometry

5000 Years of Geometry

Author: Christoph J. Scriba

Publisher: Birkhäuser

Published: 2015-04-22

Total Pages: 638

ISBN-13: 3034808984

DOWNLOAD EBOOK

The present volume provides a fascinating overview of geometrical ideas and perceptions from the earliest cultures to the mathematical and artistic concepts of the 20th century. It is the English translation of the 3rd edition of the well-received German book “5000 Jahre Geometrie,” in which geometry is presented as a chain of developments in cultural history and their interaction with architecture, the visual arts, philosophy, science and engineering. Geometry originated in the ancient cultures along the Indus and Nile Rivers and in Mesopotamia, experiencing its first “Golden Age” in Ancient Greece. Inspired by the Greek mathematics, a new germ of geometry blossomed in the Islamic civilizations. Through the Oriental influence on Spain, this knowledge later spread to Western Europe. Here, as part of the medieval Quadrivium, the understanding of geometry was deepened, leading to a revival during the Renaissance. Together with parallel achievements in India, China, Japan and the ancient American cultures, the European approaches formed the ideas and branches of geometry we know in the modern age: coordinate methods, analytical geometry, descriptive and projective geometry in the 17th an 18th centuries, axiom systems, geometry as a theory with multiple structures and geometry in computer sciences in the 19th and 20th centuries. Each chapter of the book starts with a table of key historical and cultural dates and ends with a summary of essential contents of geometr y in the respective era. Compelling examples invite the reader to further explore the problems of geometry in ancient and modern times. The book will appeal to mathematicians interested in Geometry and to all readers with an interest in cultural history. From letters to the authors for the German language edition I hope it gets a translation, as there is no comparable work. Prof. J. Grattan-Guinness (Middlesex University London) "Five Thousand Years of Geometry" - I think it is the most handsome book I have ever seen from Springer and the inclusion of so many color plates really improves its appearance dramatically! Prof. J.W. Dauben (City University of New York) An excellent book in every respect. The authors have successfully combined the history of geometry with the general development of culture and history. ... The graphic design is also excellent. Prof. Z. Nádenik (Czech Technical University in Prague)


Anachronisms in the History of Mathematics

Anachronisms in the History of Mathematics

Author: Niccolò Guicciardini

Publisher: Cambridge University Press

Published: 2021-07-22

Total Pages: 394

ISBN-13: 1108883281

DOWNLOAD EBOOK

The controversial matters surrounding the notion of anachronism are difficult ones: they have been broached by literary and art critics, by philosophers, as well as by historians of science. This book adopts a bottom-up approach to the many problems concerning anachronism in the history of mathematics. Some of the leading scholars in the field of history of mathematics reflect on the applicability of present-day mathematical language, concepts, standards, disciplinary boundaries, indeed notions of mathematics itself, to well-chosen historical case studies belonging to the mathematics of the past, in European and non-European cultures. A detailed introduction describes the key themes and binds the various chapters together. The interdisciplinary and transcultural approach adopted allows this volume to cover topics important for history of mathematics, history of the physical sciences, history of science, philosophy of mathematics, history of philosophy, methodology of history, non-European science, and the transmission of mathematical knowledge across cultures.