Mathematical Statistics and Data Analysis

Mathematical Statistics and Data Analysis

Author: John A. Rice

Publisher:

Published: 2007

Total Pages: 603

ISBN-13: 9780495118688

DOWNLOAD EBOOK

This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings.


Mathematical Statistics and Data Analysis

Mathematical Statistics and Data Analysis

Author: John A. Rice

Publisher: Brooks/Cole

Published: 2007

Total Pages: 696

ISBN-13:

DOWNLOAD EBOOK

This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book’s approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book’s descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.


Statistics and Data Analysis for Financial Engineering

Statistics and Data Analysis for Financial Engineering

Author: David Ruppert

Publisher: Springer

Published: 2015-04-21

Total Pages: 736

ISBN-13: 1493926144

DOWNLOAD EBOOK

The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.


The Statistical Analysis of Experimental Data

The Statistical Analysis of Experimental Data

Author: John Mandel

Publisher: Courier Corporation

Published: 2012-06-08

Total Pages: 434

ISBN-13: 048613959X

DOWNLOAD EBOOK

First half of book presents fundamental mathematical definitions, concepts, and facts while remaining half deals with statistics primarily as an interpretive tool. Well-written text, numerous worked examples with step-by-step presentation. Includes 116 tables.


Introduction to Statistics and Data Analysis

Introduction to Statistics and Data Analysis

Author: Roxy Peck

Publisher:

Published: 2015-03-27

Total Pages: 844

ISBN-13: 9781305649835

DOWNLOAD EBOOK

INTRODUCTION TO STATISTICS AND DATA ANALYSIS introduces you to the study of statistics and data analysis by using real data and attention-grabbing examples. The authors guide you through an intuition-based learning process that stresses interpretation and communication of statistical information. Simple notation--including frequent substitution of words for symbols--helps you grasp concepts and cement your comprehension. You'll also find coverage of most major technologies as a problem-solving tool, plus hands-on activities in each chapter that allow you to practice statistics firsthand.


All of Statistics

All of Statistics

Author: Larry Wasserman

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 446

ISBN-13: 0387217363

DOWNLOAD EBOOK

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.


Stat Labs

Stat Labs

Author: Deborah Nolan

Publisher: Springer Science & Business Media

Published: 2006-05-02

Total Pages: 292

ISBN-13: 0387227431

DOWNLOAD EBOOK

Integrating the theory and practice of statistics through a series of case studies, each lab introduces a problem, provides some scientific background, suggests investigations for the data, and provides a summary of the theory used in each case. Aimed at upper-division students.


Modern Mathematical Statistics with Applications

Modern Mathematical Statistics with Applications

Author: Jay L. Devore

Publisher: Springer Nature

Published: 2021-04-29

Total Pages: 981

ISBN-13: 3030551563

DOWNLOAD EBOOK

This 3rd edition of Modern Mathematical Statistics with Applications tries to strike a balance between mathematical foundations and statistical practice. The book provides a clear and current exposition of statistical concepts and methodology, including many examples and exercises based on real data gleaned from publicly available sources. Here is a small but representative selection of scenarios for our examples and exercises based on information in recent articles: Use of the “Big Mac index” by the publication The Economist as a humorous way to compare product costs across nations Visualizing how the concentration of lead levels in cartridges varies for each of five brands of e-cigarettes Describing the distribution of grip size among surgeons and how it impacts their ability to use a particular brand of surgical stapler Estimating the true average odometer reading of used Porsche Boxsters listed for sale on www.cars.com Comparing head acceleration after impact when wearing a football helmet with acceleration without a helmet Investigating the relationship between body mass index and foot load while running The main focus of the book is on presenting and illustrating methods of inferential statistics used by investigators in a wide variety of disciplines, from actuarial science all the way to zoology. It begins with a chapter on descriptive statistics that immediately exposes the reader to the analysis of real data. The next six chapters develop the probability material that facilitates the transition from simply describing data to drawing formal conclusions based on inferential methodology. Point estimation, the use of statistical intervals, and hypothesis testing are the topics of the first three inferential chapters. The remainder of the book explores the use of these methods in a variety of more complex settings. This edition includes many new examples and exercises as well as an introduction to the simulation of events and probability distributions. There are more than 1300 exercises in the book, ranging from very straightforward to reasonably challenging. Many sections have been rewritten with the goal of streamlining and providing a more accessible exposition. Output from the most common statistical software packages is included wherever appropriate (a feature absent from virtually all other mathematical statistics textbooks). The authors hope that their enthusiasm for the theory and applicability of statistics to real world problems will encourage students to pursue more training in the discipline.


Mathematical Foundations for Data Analysis

Mathematical Foundations for Data Analysis

Author: Jeff M. Phillips

Publisher: Springer Nature

Published: 2021-03-29

Total Pages: 299

ISBN-13: 3030623416

DOWNLOAD EBOOK

This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.