This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1934.
The Mathematical Principles of Natural Philosophy Isaac Newton Translated into English by Andrew Motte ORIGINAL CLASSIC - COMPLETE Philosophiæ Naturalis Principia Mathematica (Latin for "Mathematical Principles of Natural Philosophy"), often referred to as simply the Principia, is a work in three books by Isaac Newton, in Latin, first published 5 July 1687. After annotating and correcting his personal copy of the first edition, Newton also published two further editions, in 1713 and 1726. The Principia states Newton's laws of motion, forming the foundation of classical mechanics, also Newton's law of universal gravitation, and a derivation of Kepler's laws of planetary motion (which Kepler first obtained empirically). The Principia is "justly regarded as one of the most important works in the history of science". The French mathematical physicist Alexis Clairaut assessed it in 1747: "The famous book of mathematical Principles of natural Philosophy marked the epoch of a great revolution in physics. The method followed by its illustrious author Sir Newton ... spread the light of mathematics on a science which up to then had remained in the darkness of conjectures and hypotheses." A more recent assessment has been that while acceptance of Newton's theories was not immediate, by the end of a century after publication in 1687, "no one could deny that" (out of the Principia) "a science had emerged that, at least in certain respects, so far exceeded anything that had ever gone before that it stood alone as the ultimate exemplar of science generally."
A wide, accessible representation of the interests, problems, and philosophic issues that preoccupied the great 17th-century scientist, this collection is grouped according to methods, principles, and theological considerations. 1953 edition.
Newton's Philosophiae Naturalis Principia Mathematica provides a coherent and deductive presentation of his discovery of the universal law of gravitation. It is very much more than a demonstration that 'to us it is enough that gravity really does exist and act according to the laws which wehave explained and abundantly serves to account for all the motions of the celestial bodies and the sea'. It is important to us as a model of all mathematical physics.Representing a decade's work from a distinguished physicist, this is the first comprehensive analysis of Newton's Principia without recourse to secondary sources. Professor Chandrasekhar analyses some 150 propositions which form a direct chain leading to Newton's formulation of his universal law ofgravitation. In each case, Newton's proofs are arranged in a linear sequence of equations and arguments, avoiding the need to unravel the necessarily convoluted style of Newton's connected prose. In almost every case, a modern version of the proofs is given to bring into sharp focus the beauty,clarity, and breath-taking economy of Newton's methods.Subrahmanyan Chandrasekhar is one of the most reknowned scientists of the twentieth century, whose career spanned over 60 years. Born in India, educated at the University of Cambridge in England, he served as Emeritus Morton D. Hull Distinguished Service Professor of Theoretical Astrophysics at theUniversity of Chicago, where he has was based from 1937 until his death in 1996. His early research into the evolution of stars is now a cornerstone of modern astrophysics, and earned him the Nobel Prize for Physics in 1983. Later work into gravitational interactions between stars, the properties offluids, magnetic fields, equilibrium ellipsoids, and black holes has earned him awards throughout the world, including the Gold Medal from the Royal Astronomical Society in London (1953), the National Medal of Science in the United States (1966), and the Copley Medal from the Royal Society (1984).His many publications include Radiative transfer (1950), Hydrodynamic and hydromagnetic stability (1961), and The mathematical theory of black holes (1983), each being praised for its breadth and clarity. Newton's Principia for the common reader is the result of Professor Chandrasekhar's profoundadmiration for a scientist whose work he believed is unsurpassed, and unsurpassable.
The Mathematical Principles of Natural Philosophy, by Isaac Newton (1642 - 1727) Translated into English by Andrew Motte (1693 - 1728) Published by Daniel Adee, 1846. Edited by N. W. Chittenden Images and text used from Wikisource (Public Domain) Addendum, by Nicolae Sfetcu: - Historical context: Action at a distance - The methodology of Isaac Newton - The dispute over the priority of the law of gravity Cover: Portrait of Isaac Newton (1642-1727), by Godfrey Kneller (1646–1723), oil on canvas, 1689, Collection Isaac Newton Institute (cropped and processed) The Mathematical Principles of Natural Philosophy (Latin: "Philosophiae naturalis principia mathematica"), often abbreviated as Principia or Principia Mathematica, the Isaac Newton's masterpiece, was published in London on July 5, 1687. The text of the third edition in Latin, 1726 , will be revised and enriched for the last time by Newton, being generally considered as a reference. The book is one of the most important scientific books ever published, being the foundation of classical mechanics. It is considered by most physicists to be the most famous book in this field. Newton applies here the mathematical laws to the study of natural phenomena. The book contains Newton's laws of motion that formed the basis of Newtonian mechanics, as well as the universal law of gravity. Most translations of the book are based on Newton's third edition in 1726. The first translation, in 1729, belongs to Andrew Motte, republished in 1846 by Daniel Adee as the first American edition, edited by N. W. Chittenden. The book begins with definitions, laws, or axioms, followed by three parts (or "books") about "the motion of bodies" and "the system of the world." “This most beautiful system of the sun, planets and comets, could only proceed from the counsel and dominion of an intelligent and powerful Being... This Being governs all things, not as the soul of the world, but as Lord over all; and on account of his dominion he is wont, to be called Lord God παντοκρατωρ or Universal Ruler.” (Isaac Newton) ”The whole evolution of our ideas about the processes of nature … might be regarded as an organic development of Newton’s work.” (Subrahmanyan Chandrasekhar)
In his monumental 1687 work, Philosophiae Naturalis Principia Mathematica, known familiarly as the Principia, Isaac Newton laid out in mathematical terms the principles of time, force, and motion that have guided the development of modern physical science. Even after more than three centuries and the revolutions of Einsteinian relativity and quantum mechanics, Newtonian physics continues to account for many of the phenomena of the observed world, and Newtonian celestial dynamics is used to determine the orbits of our space vehicles. This authoritative, modern translation by I. Bernard Cohen and Anne Whitman, the first in more than 285 years, is based on the 1726 edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms. Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system. The illuminating Guide to Newton's Principia by I. Bernard Cohen makes this preeminent work truly accessible for today's scientists, scholars, and students.
An analysis of Newton's mathematical work, from early discoveries to mature reflections, and a discussion of Newton's views on the role and nature of mathematics. Historians of mathematics have devoted considerable attention to Isaac Newton's work on algebra, series, fluxions, quadratures, and geometry. In Isaac Newton on Mathematical Certainty and Method, Niccolò Guicciardini examines a critical aspect of Newton's work that has not been tightly connected to Newton's actual practice: his philosophy of mathematics. Newton aimed to inject certainty into natural philosophy by deploying mathematical reasoning (titling his main work The Mathematical Principles of Natural Philosophy most probably to highlight a stark contrast to Descartes's Principles of Philosophy). To that end he paid concerted attention to method, particularly in relation to the issue of certainty, participating in contemporary debates on the subject and elaborating his own answers. Guicciardini shows how Newton carefully positioned himself against two giants in the “common” and “new” analysis, Descartes and Leibniz. Although his work was in many ways disconnected from the traditions of Greek geometry, Newton portrayed himself as antiquity's legitimate heir, thereby distancing himself from the moderns. Guicciardini reconstructs Newton's own method by extracting it from his concrete practice and not solely by examining his broader statements about such matters. He examines the full range of Newton's works, from his early treatises on series and fluxions to the late writings, which were produced in direct opposition to Leibniz. The complex interactions between Newton's understanding of method and his mathematical work then reveal themselves through Guicciardini's careful analysis of selected examples. Isaac Newton on Mathematical Certainty and Method uncovers what mathematics was for Newton, and what being a mathematician meant to him.