Mathematical Model and Parameter Estimation for Tumor Growth

Mathematical Model and Parameter Estimation for Tumor Growth

Author: Lujun Yin

Publisher:

Published: 2018

Total Pages: 73

ISBN-13:

DOWNLOAD EBOOK

"We consider a tumor growth model initially proposed by Ward and King in 1997. Our primary goal is to find an efficient and accurate numerical method for the identification of parameters in the model (an inverse problem) from measurements of the evolving tumor over time. The so-called direct problem, in this case, is to solve a system of coupled nonlinear partial differential equations for given fixed values of the unknown parameters. We compare several derivative-free and gradient-based methods for the solution of the inverse problem which is formulated as an optimization problem with the system of partial differential equations (PDEs) as the constraint. We modify the original model by incorporating uncertainty in one of the parameters. We use the Monte Carlo method based sampling strategy, coupled with optimization methods, for the uncertainty quantification."--Abstract.


Mathematical Modeling and Bayesian Parameter Estimation in Cancer

Mathematical Modeling and Bayesian Parameter Estimation in Cancer

Author: Jie Zhao

Publisher:

Published: 2018

Total Pages: 135

ISBN-13:

DOWNLOAD EBOOK

Recent works have highlighted the role of the differentiation of fibroblast into myofibroblast in cancer initiation and progression. Fibroblasts respond in a variety of ways to concentrations of activated transforming growth factor (TGFbeta). TGFbeta has been reported to exhibit a double role in tumor cells progression and survival. It remains unclear how TGFbeta suppresses tumor growth in normal, but in the presence of tumors cells TGFbeta encourages tumor growth and differentiation of fibroblasts to myofibroblasts. In order to explore TGFbeta's double role, we develop four mathematical models, based on systems of ODEs, for the dynamics of TGFbeta at the single-cell level by incorporating intra- and extracellular processes as well as the autocrine signaling of TGFbeta. The ODE systems, given initial values and coefficients, are uniquely solvable. However, most systems are not solvable analytically. This makes it difficult to quantity the uncertainties of initial values and coefficients (called parameters), using general data-fitting methods. Most current parameter estimation methods are based on iterative local smoothing and least squares methods. In many problems, these iterative methods become stuck in local extrema particularly when the ODE systems become large and the experimental data is too sparse. This dissertation presents Simple and Hierarchical Bayesian Inference models for estimating the parameters of nonlinear ordinary differential equation systems with full or partially observed data. This present study revealed that the Simple and Hierarchical Models generally have good performance in parameters estimation of nonlinear ODE system, especially when the ODE systems are large and the experimental data is sparse. The Hierarchical model results in better accuracy and mean square error when correlation exists between variables and in the large nonlinear ODE systems. In addition, these two methods in conjunction with Adaptive MCMC (AM) algorithm schemes can improve the convergence of fit and avoid converging to local extrema. The efficiency of these two methods is illustrated by comparison with experimental time-series data of TGFbeta signaling pathways in an epithelial cell line.


Mathematical Models of Tumor-Immune System Dynamics

Mathematical Models of Tumor-Immune System Dynamics

Author: Amina Eladdadi

Publisher: Springer

Published: 2014-11-06

Total Pages: 282

ISBN-13: 1493917935

DOWNLOAD EBOOK

This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences.


Introduction to Mathematical Oncology

Introduction to Mathematical Oncology

Author: Yang Kuang

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 472

ISBN-13: 1315361981

DOWNLOAD EBOOK

Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.


Multiscale Cancer Modeling

Multiscale Cancer Modeling

Author: Thomas S. Deisboeck

Publisher: CRC Press

Published: 2010-12-08

Total Pages: 492

ISBN-13: 1439814422

DOWNLOAD EBOOK

Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat


Multiscale Modeling of Cancer

Multiscale Modeling of Cancer

Author: Vittorio Cristini

Publisher: Cambridge University Press

Published: 2010-09-09

Total Pages: 299

ISBN-13: 1139491504

DOWNLOAD EBOOK

Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.


Cancer Modelling and Simulation

Cancer Modelling and Simulation

Author: Luigi Preziosi

Publisher: CRC Press

Published: 2003-06-18

Total Pages: 456

ISBN-13: 9780203494899

DOWNLOAD EBOOK

Understanding how cancer tumours develop and spread is vital for finding treatments and cures. Cancer Modelling and Simulation demonstrates how mathematical modelling and computer simulation techniques are used to discover and gain insight into the dynamics of tumour development and growth. It highlights the benefits of tumour modelling, such as discovering optimal tumour therapy schedules, identifying the most promising candidates for further clinical investigation, and reducing the number of animal experiments. By examining the analytical, mathematical, and biological aspects of tumour growth and modelling, the book provides a common language and knowledge for professionals in several disciplines.


Computational Fluid and Solid Mechanics 2003

Computational Fluid and Solid Mechanics 2003

Author: K.J Bathe

Publisher: Elsevier

Published: 2003-06-02

Total Pages: 2485

ISBN-13: 008052947X

DOWNLOAD EBOOK

Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics. Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design.The eight tasks are: The automatic solution of mathematical models Effective numerical schemes for fluid flows The development of an effective mesh-free numerical solution method The development of numerical procedures for multiphysics problems The development of numerical procedures for multiscale problems The modelling of uncertainties The analysis of complete life cycles of systems Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features Bridges the gap between academic researchers and practitioners in industry Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis


Mathematical Modelling in Biomedicine

Mathematical Modelling in Biomedicine

Author: Vitaly Volpert

Publisher: MDPI

Published: 2021-01-26

Total Pages: 224

ISBN-13: 3039434934

DOWNLOAD EBOOK

Mathematical modelling in biomedicine is a rapidly developing scientific discipline at the intersection of medicine, biology, mathematics, physics, and computer science. Its progress is stimulated by fundamental scientific questions and by the applications to public health. This book represents a collection of papers devoted to mathematical modelling of various physiological problems in normal and pathological conditions. It covers a broad range of topics including cardiovascular system and diseases, heart and brain modelling, tumor growth, viral infections, and immune response. Computational models of blood circulation are used to study the influence of heart arrhythmias on coronary blood flow and on operating modes for left-ventricle-assisted devices. Wave propagation in the cardiac tissue is investigated in order to show the influence of tissue heterogeneity and fibrosis. The models of tumor growth are used to determine optimal protocols of antiangiogenic and radiotherapy. The models of viral hepatitis kinetics are considered for the parameter identification, and the evolution of viral quasi-species is investigated. The book presents the state-of-the-art in mathematical modelling in biomedicine and opens new perspectives in this passionate field of research.


The Mathematics of Cancer

The Mathematics of Cancer

Author: Dyjuan Tatro

Publisher:

Published: 2018

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Mathematical models are finding increased use in biology, and partuculary in the field of cancer research. In relation to cancer, systems of differential equations have been proven to model tumor growth for many types of cancer while taking into account one or many features of tumor growth. One feature of tumor growth that models must take into account is that tumors do not grow exponentially. One model that embodies this feature is the Gomperts Model of Cell Growth. By fitting this model to long-term breast cancer study data, this project ascertains gompertzian parameters that can be used to predicts tumor growth as a function of time.