The papers in this volume address the state-of-the-art and future directions in applied mathematics in both scattering theory and biomedical technology. A workshop held in Metsovo, Greece during the summer of 1997 brought together some of the world's foremose experts in the field with researchers working in Greece. Sixteen of the contributed papers appear in this volume. All the papers give new directions, and in several cases, the most important scientific contributions in the fields.
This volume comprises the papers presented at the Seventh International Workshop on Scattering Theory and Biomedical Engineering, focusing on the hottest topics in scattering theory and biomedical technology. All the contributions are state-of-the-art and have been fully reviewed. The authors are recognized as being eminent both in their field and in the science community. Sample Chapter(s). Chapter 1: A Method to Solve Inverse Scattering Problems for Electromagetic Fields in Chiral Media (891 KB). Contents: A Method to Solve Inverse Scattering Problems for Electromagnetic Fields in Chiral Media (C Athanasiadis & E Kardasi); Nonlinear Integral Equations in Inverse Obstacle Scattering (O Ivanyshyn & R Kres); Homogenization in Chiral Elasticity (G Barbatis & I G Stratis); Shape Control and Damage Identification of Piezoelectric Smart Beams Using Finite Element Modelling and Genetic Optimization (E P Hadjigeorgiou et al.); A Fast Numerical Method for a Simplified Phase Field Model (C A Sfyrakis & V A Dougalis); On the Hidden Electromagnetic Activity of the Brain (G Dassios); A Decision Tree Based Approach for the Identification of Ischaemic Beats in ECG Recordings (T P Exarchos et al.); An Automatic Microcalcification Detection System Utilizing Mammorgraphic Enhancement Techniques (A N Papadopoulos & D I Fotiadis); Multidimensional Cardiac Models (D G Tsalikakis et al.); Mobile and Electronic Medical Support and Education for Dyslexic Students (M Virvou & E Alepis); and other papers. Readership: Graduate students, academics and researchers in industry working in biomedical engineering, computational biology, mathematical biology and mathematical physics.
Fractional calculus is a rapidly growing field of research, at the interface between probability, differential equations, and mathematical physics. It is used to model anomalous diffusion, in which a cloud of particles spreads in a different manner than traditional diffusion. This monograph develops the basic theory of fractional calculus and anomalous diffusion, from the point of view of probability. In this book, we will see how fractional calculus and anomalous diffusion can be understood at a deep and intuitive level, using ideas from probability. It covers basic limit theorems for random variables and random vectors with heavy tails. This includes regular variation, triangular arrays, infinitely divisible laws, random walks, and stochastic process convergence in the Skorokhod topology. The basic ideas of fractional calculus and anomalous diffusion are closely connected with heavy tail limit theorems. Heavy tails are applied in finance, insurance, physics, geophysics, cell biology, ecology, medicine, and computer engineering. The goal of this book is to prepare graduate students in probability for research in the area of fractional calculus, anomalous diffusion, and heavy tails. Many interesting problems in this area remain open. This book will guide the motivated reader to understand the essential background needed to read and unerstand current research papers, and to gain the insights and techniques needed to begin making their own contributions to this rapidly growing field.
In 2005, the National Research Council report Rising Above the Gathering Storm recommended a new way for the federal government to spur technological breakthroughs in the energy sector. It recommended the creation of a new agency, the Advanced Research Projects Agency-Energy, or ARPA-E, as an adaptation of the Defense Advanced Research Projects Agency (DARPA) modelâ€"widely considered a successful experiment that has funded out-of-the-box, transformative research and engineering that made possible the Internet, GPS, and stealth aircraft. This new agency was envisioned as a means of tackling the nation's energy challenges in a way that could translate basic research into technological breakthroughs while also addressing economic, environmental, and security issues. Congress authorized ARPA-E in the 2007 America COMPETES Act and requested an early assessment following 6 years of operation to examine the agency's progress toward achieving its statutory mission and goals. This publication summarizes the results of that assessment.
If we lived in a liquid world, the concept of a "machine" would make no sense. Liquid life is metaphor and apparatus that discusses the consequences of thinking, working, and living through liquids. It is an irreducible, paradoxical, parallel, planetary-scale material condition, unevenly distributed spatially, but temporally continuous. It is what remains when logical explanations can no longer account for the experiences that we recognize as part of "being alive."Liquid Life references a third-millennial understanding of matter that seeks to restore the agency of the liquid soul for an ecological era, which has been banished by reductionist, "brute" materialist discourses and mechanical models of life. Offering an alternative worldview of the living realm through a "new materialist" and "liquid" study of matter, Armstrong conjures forth examples of creatures that do not obey mechanistic concepts like predictability, efficiency, and rationality. With the advent of molecular science, an increasingly persuasive ontology of liquid technologies can be identified. Through the lens of lifelike dynamic droplets, the agency for these systems exists at the interfaces between different fields of matter/energy that respond to highly local effects, with no need for a central organizing system.Liquid Life seeks an alternative partnership between humanity and the natural world. It provokes a re-invention of the languages of the living realm to open up alternative spaces for exploration, including contributor Rolf Hughes' "angelology" of language, which explores the transformative invocations of prose poetry, and Simone Ferracina's graphical notations that help shape our concepts of metabolism, upcycling, and designing with fluids. A conceptual and practical toolset for thinking and designing, liquid life reunites us with the irreducible "soul substance" of living things, which will neither be simply "solved," nor go away.
Kurt Gödel was an intellectual giant. His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Shattering hopes that logic would, in the end, allow us a complete understanding of the universe, Gödel's theorem also raised many provocative questions: What are the limits of rational thought? Can we ever fully understand the machines we build? Or the inner workings of our own minds? How should mathematicians proceed in the absence of complete certainty about their results? Equally legendary were Gödel's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first book for a general audience on this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life.
"More and more, the applications of science affect us. New and expensive scientific and technical projects are proposed. At the same time, the scientific community has come under increasing criticism, for their alleged misuse of science. Some voices have been raised to urge a return to the ways of earlier times when life seemed less complicated and certainly less dependent on science and its products. Despite these occasional and sentimental backward glances, there can be no return; instead we must accommodate to the persistence of a society in which science and technology play a large role. But that does not need to imply passive acceptance, for many of us can play a role in shaping the directions of our society. What is needed for this, however, is some awareness of the functioning of science, as it really exists and not as it appears in the often-prevalent caricatures."- Publisher