Mathematical Interest Theory: Third Edition

Mathematical Interest Theory: Third Edition

Author: Leslie Jane Federer Vaaler

Publisher: American Mathematical Soc.

Published: 2021-04-15

Total Pages: 581

ISBN-13: 147046568X

DOWNLOAD EBOOK

Mathematical Interest Theory provides an introduction to how investments grow over time. This is done in a mathematically precise manner. The emphasis is on practical applications that give the reader a concrete understanding of why the various relationships should be true. Among the modern financial topics introduced are: arbitrage, options, futures, and swaps. Mathematical Interest Theory is written for anyone who has a strong high-school algebra background and is interested in being an informed borrower or investor. The book is suitable for a mid-level or upper-level undergraduate course or a beginning graduate course. The content of the book, along with an understanding of probability, will provide a solid foundation for readers embarking on actuarial careers. The text has been suggested by the Society of Actuaries for people preparing for the Financial Mathematics exam. To that end, Mathematical Interest Theory includes more than 260 carefully worked examples. There are over 475 problems, and numerical answers are included in an appendix. A companion student solution manual has detailed solutions to the odd-numbered problems. Most of the examples involve computation, and detailed instruction is provided on how to use the Texas Instruments BA II Plus and BA II Plus Professional calculators to efficiently solve the problems. This Third Edition updates the previous edition to cover the material in the SOA study notes FM-24-17, FM-25-17, and FM-26-17.


Student Solution Manual for Mathematical Interest Theory

Student Solution Manual for Mathematical Interest Theory

Author: Leslie Jane Federer Vaaler

Publisher: American Mathematical Soc.

Published: 2020-05-05

Total Pages: 121

ISBN-13: 0883857553

DOWNLOAD EBOOK

This manual is written to accompany Mathematical Interest Theory, by Leslie Jane Federer Vaaler and James Daniel. It includes detailed solutions to the odd-numbered problems. There are solutions to 239 problems, and sometimes more than one way to reach the answer is presented. In keeping with the presentation of the text, calculator discussions for the Texas Instruments BA II Plus or BA II Plus Professional calculator is typeset in a different font from the rest of the text.


The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods

Author: Susanne Brenner

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 369

ISBN-13: 1475736584

DOWNLOAD EBOOK

A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide


The Mathematical Theory of Information

The Mathematical Theory of Information

Author: Jan Kåhre

Publisher: Springer Science & Business Media

Published: 2002-06-30

Total Pages: 528

ISBN-13: 9781402070648

DOWNLOAD EBOOK

The general concept of information is here, for the first time, defined mathematically by adding one single axiom to the probability theory. This Mathematical Theory of Information is explored in fourteen chapters: 1. Information can be measured in different units, in anything from bits to dollars. We will here argue that any measure is acceptable if it does not violate the Law of Diminishing Information. This law is supported by two independent arguments: one derived from the Bar-Hillel ideal receiver, the other is based on Shannon's noisy channel. The entropy in the 'classical information theory' is one of the measures conforming to the Law of Diminishing Information, but it has, however, properties such as being symmetric, which makes it unsuitable for some applications. The measure reliability is found to be a universal information measure. 2. For discrete and finite signals, the Law of Diminishing Information is defined mathematically, using probability theory and matrix algebra. 3. The Law of Diminishing Information is used as an axiom to derive essential properties of information. Byron's law: there is more information in a lie than in gibberish. Preservation: no information is lost in a reversible channel. Etc. The Mathematical Theory of Information supports colligation, i. e. the property to bind facts together making 'two plus two greater than four'. Colligation is a must when the information carries knowledge, or is a base for decisions. In such cases, reliability is always a useful information measure. Entropy does not allow colligation.


A Mathematical Theory of Evidence

A Mathematical Theory of Evidence

Author: Glenn Shafer

Publisher: Princeton University Press

Published: 2020-06-30

Total Pages:

ISBN-13: 0691214697

DOWNLOAD EBOOK

Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.


The Knot Book

The Knot Book

Author: Colin Conrad Adams

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 330

ISBN-13: 0821836781

DOWNLOAD EBOOK

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.


Number Theory and Its History

Number Theory and Its History

Author: Oystein Ore

Publisher: Courier Corporation

Published: 2012-07-06

Total Pages: 404

ISBN-13: 0486136434

DOWNLOAD EBOOK

Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.


An Introduction to the Mathematical Theory of Inverse Problems

An Introduction to the Mathematical Theory of Inverse Problems

Author: Andreas Kirsch

Publisher: Springer Science & Business Media

Published: 2011-03-24

Total Pages: 314

ISBN-13: 1441984747

DOWNLOAD EBOOK

This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.


Introduction to Mathematical Systems Theory

Introduction to Mathematical Systems Theory

Author: J.C. Willems

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 446

ISBN-13: 1475729537

DOWNLOAD EBOOK

Using the behavioural approach to mathematical modelling, this book views a system as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. The first part analyses the structure of the set of trajectories generated by such dynamical systems, and derives the conditions for two systems of differential equations to be equivalent in the sense that they define the same behaviour. In addition the memory structure of the system is analysed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. In the third part, control problems are considered, in particular stabilisation and pole placement questions. Suitable for advanced undergraduate or beginning graduate students in mathematics and engineering, this text contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.


How Economics Became a Mathematical Science

How Economics Became a Mathematical Science

Author: E. Roy Weintraub

Publisher: Duke University Press

Published: 2002-05-28

Total Pages: 329

ISBN-13: 0822383802

DOWNLOAD EBOOK

In How Economics Became a Mathematical Science E. Roy Weintraub traces the history of economics through the prism of the history of mathematics in the twentieth century. As mathematics has evolved, so has the image of mathematics, explains Weintraub, such as ideas about the standards for accepting proof, the meaning of rigor, and the nature of the mathematical enterprise itself. He also shows how economics itself has been shaped by economists’ changing images of mathematics. Whereas others have viewed economics as autonomous, Weintraub presents a different picture, one in which changes in mathematics—both within the body of knowledge that constitutes mathematics and in how it is thought of as a discipline and as a type of knowledge—have been intertwined with the evolution of economic thought. Weintraub begins his account with Cambridge University, the intellectual birthplace of modern economics, and examines specifically Alfred Marshall and the Mathematical Tripos examinations—tests in mathematics that were required of all who wished to study economics at Cambridge. He proceeds to interrogate the idea of a rigorous mathematical economics through the connections between particular mathematical economists and mathematicians in each of the decades of the first half of the twentieth century, and thus describes how the mathematical issues of formalism and axiomatization have shaped economics. Finally, How Economics Became a Mathematical Science reconstructs the career of the economist Sidney Weintraub, whose relationship to mathematics is viewed through his relationships with his mathematician brother, Hal, and his mathematician-economist son, the book’s author.