Mathematical Evolutionary Theory

Mathematical Evolutionary Theory

Author: Marcus W. Feldman

Publisher:

Published: 2014-07-14

Total Pages: 0

ISBN-13: 9780691609171

DOWNLOAD EBOOK

"The papers in this volume celebrate Samuel Karlin's contributions to mathematical evolutionary theory."--Page vii.


Evolutionary Theory

Evolutionary Theory

Author: Sean H. Rice

Publisher: Sinauer Associates Incorporated

Published: 2004

Total Pages: 370

ISBN-13: 9780878937028

DOWNLOAD EBOOK

Evolutionary Theory is for graduate students, researchers, and advanced undergraduates who want an understanding of the mathematical and biological reasoning that underlies evolutionary theory. The book covers all of the major theoretical approaches used to study the mechanics of evolution, including classical one- and two-locus models, diffusion theory, coalescent theory, quantitative genetics, and game theory. There are also chapters on theoretical approaches to the evolution of development and on multilevel selection theory. Each subject is illustrated by focusing on those results that have the greatest power to influence the way that we think about how evolution works. These major results are developed in detail, with many accompanying illustrations, showing exactly how they are derived and how the mathematics relates to the biological insights that they yield. In this way, the reader learns something of the actual machinery of different branches of theory while gaining a deeper understanding of the evolutionary process. Roughly half of the book focuses on gene-based models, the other half being concerned with general phenotype-based theory. Throughout, emphasis is placed on the fundamental relationships between the different branches of theory, illustrating how all of these branches are united by a few basic, universal, principles. The only mathematical background assumed is basic calculus. More advanced mathematical methods are explained, with the help of an extensive appendix, when they are needed.


Mathematical Models of Social Evolution

Mathematical Models of Social Evolution

Author: Richard McElreath

Publisher: University of Chicago Press

Published: 2008-09-15

Total Pages: 429

ISBN-13: 0226558282

DOWNLOAD EBOOK

Over the last several decades, mathematical models have become central to the study of social evolution, both in biology and the social sciences. But students in these disciplines often seriously lack the tools to understand them. A primer on behavioral modeling that includes both mathematics and evolutionary theory, Mathematical Models of Social Evolution aims to make the student and professional researcher in biology and the social sciences fully conversant in the language of the field. Teaching biological concepts from which models can be developed, Richard McElreath and Robert Boyd introduce readers to many of the typical mathematical tools that are used to analyze evolutionary models and end each chapter with a set of problems that draw upon these techniques. Mathematical Models of Social Evolution equips behaviorists and evolutionary biologists with the mathematical knowledge to truly understand the models on which their research depends. Ultimately, McElreath and Boyd’s goal is to impart the fundamental concepts that underlie modern biological understandings of the evolution of behavior so that readers will be able to more fully appreciate journal articles and scientific literature, and start building models of their own.


The Role of Mathematics in Evolutionary Theory

The Role of Mathematics in Evolutionary Theory

Author: Jun Otsuka

Publisher: Cambridge University Press

Published: 2019-10-17

Total Pages: 75

ISBN-13: 9781108727853

DOWNLOAD EBOOK

The central role of mathematical modeling in modern evolutionary theory has raised a concern as to why and how abstract formulae can say anything about empirical phenomena of evolution. This Element introduces existing philosophical approaches to this problem and proposes a new account according to which evolutionary models are based on causal, and not just mathematical, assumptions. The novel account features causal models both as the Humean 'uniform nature' underlying evolutionary induction and as the organizing framework that integrates mathematical and empirical assumptions into a cohesive network of beliefs that functions together to achieve epistemic goals of evolutionary biology.


A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

Author: Sarah P. Otto

Publisher: Princeton University Press

Published: 2011-09-19

Total Pages: 745

ISBN-13: 1400840910

DOWNLOAD EBOOK

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available


Evolution of Mathematical Concepts

Evolution of Mathematical Concepts

Author: Raymond L. Wilder

Publisher: Courier Corporation

Published: 2013-01-01

Total Pages: 242

ISBN-13: 0486490610

DOWNLOAD EBOOK

Accessible to students and relevant to specialists, this remarkable book by a prominent educator offers a unique perspective on the evolutionary development of mathematics. Rather than conducting a survey of the history or philosophy of mathematics, Raymond L. Wilder envisions mathematics as a broad cultural phenomenon. His treatment examines and illustrates how such concepts as number and length were affected by historic and social events. Starting with a brief consideration of preliminary notions, this study explores the early evolution of numbers, the evolution of geometry, and the conquest of the infinite as embodied by real numbers. A detailed look at the processes of evolution concludes with an examination of the evolutionary aspects of modern mathematics.


Proving Darwin

Proving Darwin

Author: Gregory J. Chaitin

Publisher: Pantheon

Published: 2012

Total Pages: 146

ISBN-13: 0375423141

DOWNLOAD EBOOK

Explains how evolution works on a mathematical level, arguing that mathematical theory is an essential part of evolution while highlighting mathematical principles in the biological world.


Dynamical Systems and Evolution Equations

Dynamical Systems and Evolution Equations

Author: John A. Walker

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 244

ISBN-13: 1468410369

DOWNLOAD EBOOK

This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.