Mathematical Elasticity

Mathematical Elasticity

Author:

Publisher: Elsevier

Published: 1997-07-22

Total Pages: 561

ISBN-13: 0080535917

DOWNLOAD EBOOK

The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established. In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Kármán equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.


Three-Dimensional Elasticity

Three-Dimensional Elasticity

Author: Philippe G. Ciarlet

Publisher: Elsevier

Published: 1994-01-19

Total Pages: 500

ISBN-13: 9780444817761

DOWNLOAD EBOOK

This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.


Mathematical Elasticity, Volume III

Mathematical Elasticity, Volume III

Author: Philippe G. Ciarlet

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9781611976816

DOWNLOAD EBOOK

The Mathematical Elasticity set contains three self-contained volumes that together provide the only modern treatise on elasticity. They introduce contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells. Each volume contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. An extended preface and extensive bibliography have been added to each volume to highlight the progress that has been made since the original publication. The first book, Three-Dimensional Elasticity, covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. In volume two, Theory of Plates, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. The objective of Theory of Shells, the final volume, is to show how asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear shell theories: membrane, generalized membrane, and flexural. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.


Mathematical Elasticity, Volume II

Mathematical Elasticity, Volume II

Author: Philippe G. Ciarlet

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9781611976793

DOWNLOAD EBOOK

The Mathematical Elasticity set contains three self-contained volumes that together provide the only modern treatise on elasticity. They introduce contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells. Each volume contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. An extended preface and extensive bibliography have been added to each volume to highlight the progress that has been made since the original publication. The first book, Three-Dimensional Elasticity, covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. In volume two, Theory of Plates, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. The objective of Theory of Shells, the final volume, is to show how asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear shell theories: membrane, generalized membrane, and flexural. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.


Three-Dimensional Elasticity

Three-Dimensional Elasticity

Author:

Publisher: Elsevier

Published: 1988-04-01

Total Pages: 495

ISBN-13: 0080875416

DOWNLOAD EBOOK

This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.


Mathematical Elasticity

Mathematical Elasticity

Author: Philippe G. Ciarlet

Publisher: SIAM

Published: 2022-01-22

Total Pages: 575

ISBN-13: 1611976804

DOWNLOAD EBOOK

In this second book of a three-volume set, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. Theory of Plates also illustrates how asymptotic methods allow for justification of the Kirchhoff–Love theory of nonlinear elastic plates and presents a detailed mathematical analysis of the von Kármán equations. An extended preface and extensive bibliography have been added to highlight the progress that has been made since the volume’s original publication. While each one of the three volumes is self-contained, together the Mathematical Elasticity set provides the only modern treatise on elasticity; introduces contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells; and contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.


A Treatise on the Mathematical Theory of Elasticity

A Treatise on the Mathematical Theory of Elasticity

Author: A. E. H. Love

Publisher: Cambridge University Press

Published: 2013-01-03

Total Pages: 663

ISBN-13: 1107618096

DOWNLOAD EBOOK

Originally published in 1927, this is a classic account of the mathematical theory of elasticity by English mathematician A. E. H. Love. The text provides a detailed explanation of the topic in its various aspects, revealing important relationships with general physics and applications to engineering.


Mathematical Foundations of Elasticity

Mathematical Foundations of Elasticity

Author: Jerrold E. Marsden

Publisher: Courier Corporation

Published: 2012-10-25

Total Pages: 578

ISBN-13: 0486142272

DOWNLOAD EBOOK

Graduate-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It presents a classical subject in a modern setting, with examples of newer mathematical contributions. 1983 edition.