Mathematical Analysis and Simulation of Field Models in Accelerator Circuits

Mathematical Analysis and Simulation of Field Models in Accelerator Circuits

Author: Idoia Cortes Garcia

Publisher: Springer Nature

Published: 2021-01-04

Total Pages: 171

ISBN-13: 3030632733

DOWNLOAD EBOOK

This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of “quenching”, i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.


Design Methods for Reducing Failure Probabilities with Examples from Electrical Engineering

Design Methods for Reducing Failure Probabilities with Examples from Electrical Engineering

Author: Mona Fuhrländer

Publisher: Springer Nature

Published: 2023-08-28

Total Pages: 168

ISBN-13: 3031370198

DOWNLOAD EBOOK

This book deals with efficient estimation and optimization methods to improve the design of electrotechnical devices under uncertainty. Uncertainties caused by manufacturing imperfections, natural material variations, or unpredictable environmental influences, may lead, in turn, to deviations in operation. This book describes two novel methods for yield (or failure probability) estimation. Both are hybrid methods that combine the accuracy of Monte Carlo with the efficiency of surrogate models. The SC-Hybrid approach uses stochastic collocation and adjoint error indicators. The non-intrusive GPR-Hybrid approach consists of a Gaussian process regression that allows surrogate model updates on the fly. Furthermore, the book proposes an adaptive Newton-Monte-Carlo (Newton-MC) method for efficient yield optimization. In turn, to solve optimization problems with mixed gradient information, two novel Hermite-type optimization methods are described. All the proposed methods have been numerically evaluated on two benchmark problems, such as a rectangular waveguide and a permanent magnet synchronous machine. Results showed that the new methods can significantly reduce the computational effort of yield estimation, and of single- and multi-objective yield optimization under uncertainty. All in all, this book presents novel strategies for quantification of uncertainty and optimization under uncertainty, with practical details to improve the design of electrotechnical devices, yet the methods can be used for any design process affected by uncertainties.


Field Computation for Accelerator Magnets

Field Computation for Accelerator Magnets

Author: Stephan Russenschuck

Publisher: John Wiley & Sons

Published: 2011-02-08

Total Pages: 778

ISBN-13: 3527635475

DOWNLOAD EBOOK

Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.


Computational Electromagnetics—Retrospective and Outlook

Computational Electromagnetics—Retrospective and Outlook

Author: Iftikhar Ahmed

Publisher: Springer

Published: 2014-08-27

Total Pages: 328

ISBN-13: 9812870954

DOWNLOAD EBOOK

The book will cover the past, present and future developments of field theory and computational electromagnetics. The first two chapters will give an overview of the historical developments and the present the state-of-the-art in computational electromagnetics. These two chapters will set the stage for discussing recent progress, new developments, challenges, trends and major directions in computational electromagnetics with three main emphases: a. Modeling of ever larger structures with multi-scale dimensions and multi-level descriptions (behavioral, circuit, network and field levels) and transient behaviours b. Inclusions of physical effects other than electromagnetic: quantum effects, thermal effects, mechanical effects and nano scale features c. New developments in available computer hardware, programming paradigms (MPI, Open MP, CUDA and Open CL) and the associated new modeling approaches These are the current emerging topics in the area of computational electromagnetics and may provide readers a comprehensive overview of future trends and directions in the area. The book is written for students, research scientists, professors, design engineers and consultants who engaged in the fields of design, analysis and research of the emerging technologies related to computational electromagnetics, RF/microwave, optimization, new numerical methods, as well as accelerator simulator, dispersive materials, nano-antennas, nano-waveguide, nano-electronics, terahertz applications, bio-medical and material sciences. The book may also be used for those involved in commercializing electromagnetic and related emerging technologies, sensors and the semiconductor industry. The book can be used as a reference book for graduates and post graduates. It can also be used as a text book for workshops and continuing education for researchers and design engineers.


Mathematical Modeling and Simulation

Mathematical Modeling and Simulation

Author: Kai Velten

Publisher: John Wiley & Sons

Published: 2009-06-01

Total Pages: 362

ISBN-13: 3527627618

DOWNLOAD EBOOK

This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).


Parallel Sparse Direct Solver for Integrated Circuit Simulation

Parallel Sparse Direct Solver for Integrated Circuit Simulation

Author: Xiaoming Chen

Publisher: Springer

Published: 2017-02-11

Total Pages: 137

ISBN-13: 3319534297

DOWNLOAD EBOOK

This book describes algorithmic methods and parallelization techniques to design a parallel sparse direct solver which is specifically targeted at integrated circuit simulation problems. The authors describe a complete flow and detailed parallel algorithms of the sparse direct solver. They also show how to improve the performance by simple but effective numerical techniques. The sparse direct solver techniques described can be applied to any SPICE-like integrated circuit simulator and have been proven to be high-performance in actual circuit simulation. Readers will benefit from the state-of-the-art parallel integrated circuit simulation techniques described in this book, especially the latest parallel sparse matrix solution techniques.