Handbook of Ion Beam Processing Technology

Handbook of Ion Beam Processing Technology

Author: Jerome J. Cuomo

Publisher: William Andrew

Published: 1989

Total Pages: 464

ISBN-13:

DOWNLOAD EBOOK

This book, by 36 authorities on the subject, deals with ion beam processing for basic sputter etching of samples, for sputter deposition of thin films, for synthesis of material in thin film form, and of the modification of thin film properties.


Ion Implantation and Synthesis of Materials

Ion Implantation and Synthesis of Materials

Author: Michael Nastasi

Publisher: Springer Science & Business Media

Published: 2007-05-16

Total Pages: 271

ISBN-13: 3540452982

DOWNLOAD EBOOK

Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.


Ion Beams in Materials Processing and Analysis

Ion Beams in Materials Processing and Analysis

Author: Bernd Schmidt

Publisher: Springer Science & Business Media

Published: 2012-12-13

Total Pages: 425

ISBN-13: 3211993568

DOWNLOAD EBOOK

A comprehensive review of ion beam application in modern materials research is provided, including the basics of ion beam physics and technology. The physics of ion-solid interactions for ion implantation, ion beam synthesis, sputtering and nano-patterning is treated in detail. Its applications in materials research, development and analysis, developments of special techniques and interaction mechanisms of ion beams with solid state matter result in the optimization of new material properties, which are discussed thoroughly. Solid-state properties optimization for functional materials such as doped semiconductors and metal layers for nano-electronics, metal alloys, and nano-patterned surfaces is demonstrated. The ion beam is an important tool for both materials processing and analysis. Researchers engaged in solid-state physics and materials research, engineers and technologists in the field of modern functional materials will welcome this text.


Ion Beam Modification of Materials

Ion Beam Modification of Materials

Author: J.S. Williams

Publisher: Newnes

Published: 2012-12-02

Total Pages: 1157

ISBN-13: 0444599746

DOWNLOAD EBOOK

This conference consisted of 15 oral sessions, including three plenary papers covering areas of general interest, 22 specialist invited papers and 51 contributed presentations as well as three poster sessions. There were several scientific highlights covering a diverse spectrum of materials and ion beam processing methods. These included a wide range of conventional and novel applications such as: optical displays and opto-electronics, motor vehicle and tooling parts, coatings tailored for desired properties, studies of fundamental defect properties, the production of novel (often buried) compounds, and treating biomedical materials. The study of nanocrystals produced by ion implantation in a range of host matrices, particularly for opto-electronics applications, was one especially new and exciting development. Despite several decades of study, major progress was reported at the conference in understanding defect evolution in semiconductors and the role of defects in transient impurity diffusion. The use of implantation to tune or isolate optical devices and in forming optically active centres and waveguides in semiconductors, polymers and oxide ceramics was a major focus of several presentations at the conference. The formation of hard coatings by ion assisted deposition or direct implantation was also an area which showed much recent progress. Ion beam techniques had also developed apace, particularly those based on plasma immersion ion implantation or alternative techniques for large area surface treatment. Finally, the use of ion beams for the direct treatment of cancerous tissue was a particularly novel and interesting application of ion beams.


Ion Beam Processing of Materials and Deposition Processes of Protective Coatings

Ion Beam Processing of Materials and Deposition Processes of Protective Coatings

Author: P.L.F. Hemment

Publisher: Newnes

Published: 2012-12-02

Total Pages: 630

ISBN-13: 0444596313

DOWNLOAD EBOOK

Containing the proceedings of three symposia in the E-MRS series this book is divided into two parts. Part one is concerned with ion beam processing, a particularly powerful and versatile technology which can be used both to synthesise and modify materials, including metals, semiconductors, ceramics and dielectrics, with great precision and excellent control. Furthermore it also deals with the correlated effects in atomic and cluster ion bombardment and implantation.Part two deals with the deposition techniques, characterization and applications of advanced ceramic, metallic and polymeric coatings or thin films for surface protection against corrosion, erosion, abrasion, diffusion and for lubrication of contracting surfaces in relative motion.


Laser and Ion Beam Modification of Materials

Laser and Ion Beam Modification of Materials

Author: I. Yamada

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 646

ISBN-13: 1483164047

DOWNLOAD EBOOK

Laser and Ion Beam Modification of Materials is a compilation of materials from the proceedings of the symposium U: Material Synthesis and Modification by Ion beams and Laser Beams. This collection discusses the founding of the KANSAI Science City in Japan, and the structures, equipment, and research projects of two institutions are discussed pertaining to eV-MeV ion beams. A description of ion beams as used in materials research and in manufacturing processes, along with trends in ion implantation technology in semiconductors, is discussed. Research into ion beams by China and its industrial uses in non-semiconductor area is noted. For industrial applications, developing technology in terms of high speed, large surface modifications and use of high doses is important. Thus, the development of different ion beam approaches is examined. Industrial applications of ion and laser processing are discussed as cluster beams are used in solid state physics and chemistry. Mention is made on a high power discharge pumped solid state physics (ArF) excimer laser as a potential light source for better material processing. Under ion beam material processing is nanofabrication using focused ion beams, important for research work in mesoscopic systems. Progress in the use of ion-beam mixing using kinetic energy of ion-beams to mingle with pre-deposited surface layers of substrate materials has shown promise. Advanced materials researchers and scientists, as well as academicians in the field of nuclear physics, will find this collection helpful.


Ion Beam Modification of Solids

Ion Beam Modification of Solids

Author: Werner Wesch

Publisher: Springer

Published: 2016-07-14

Total Pages: 547

ISBN-13: 3319335618

DOWNLOAD EBOOK

This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for insulators and semiconductors. Finally some selected applications of ion beams are given.


Materials Modification by High-fluence Ion Beams

Materials Modification by High-fluence Ion Beams

Author: Roger Kelly

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 586

ISBN-13: 9400912676

DOWNLOAD EBOOK

Proceedings of the NATO Advanced Study Institute on Materials Modification by High-Fluence Ion Beams, Viana do Castelo, Portugal, August 24-September 4, 1987


Materials Science with Ion Beams

Materials Science with Ion Beams

Author: Harry Bernas

Publisher: Springer Science & Business Media

Published: 2009-10-03

Total Pages: 386

ISBN-13: 354088789X

DOWNLOAD EBOOK

Materials science is the prime example of an interdisciplinary science. It - compasses the ?elds of physics, chemistry, material science, electrical en- neering, chemical engineering and other disciplines. Success has been o- standing. World-class accomplishments in materials have been recognized by NobelprizesinPhysicsandChemistryandgivenrisetoentirelynewtechno- gies. Materials science advances have underpinned the technology revolution that has driven societal changes for the last ?fty years. Obviouslytheendisnotinsight!Futuretechnology-basedproblemsd- inatethecurrentscene.Highonthelistarecontrolandconservationofenergy and environment, water purity and availability, and propagating the inf- mation revolution. All fall in the technology domain. In every case proposed solutions begin with new forms of materials, materials processing or new arti?cial material structures. Scientists seek new forms of photovoltaics with greater e?ciency and lower cost. Water purity may be solved through surface control, which promises new desalination processes at lower energy and lower cost. Revolutionary concepts to extend the information revolution reside in controlling the “spin” of electrons or enabling quantum states as in quantum computing. Ion-beam experts make substantial contributions to all of these burgeoning sciences.


Materials Surface Processing by Directed Energy Techniques

Materials Surface Processing by Directed Energy Techniques

Author: Yves Pauleau

Publisher: Elsevier

Published: 2006-04-25

Total Pages: 745

ISBN-13: 0080458963

DOWNLOAD EBOOK

The current status of the science and technology related to coatings, thin films and surface modifications produced by directed energy techniques is assessed in Materials Surface Processing by Directed Energy Techniques. The subject matter is divided into 20 chapters - each presented at a tutorial level – rich with fundamental science and experimental results. New trends and new results are also evoked to give an overview of future developments and applications. - Provides a broad overview on modern coating and thin film deposition techniques, and their applications - Presents and discusses various problems of physics and chemistry involved in the production, characterization and applications of coatings and thin films - Each chapter includes experimental results illustrating various models, mechanisms or theories